[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discrimination of ADHD Based on fMRI Data with Deep Belief Network

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

Abstract

Effective discrimination of attention deficit hyperactivity disorder (ADHD) using imaging and functional biomarkers would have fundamental influence on public health. In this paper, we created a classification model using ADHD-200 dataset focusing on resting state functional magnetic resonance imaging. We predicted ADHD status and subtype by deep belief network (DBN). In the data preprocessing stage, in order to reduce the high dimension of fMRI brain data, brodmann mask, Fast Fourier Transform algorithm (FFT) and max-pooling of frequencies are applied respectively. Experimental results indicate that our method has a good discrimination effect, and outperform the results of the ADHD-200 competition. Meanwhile, our results conform to the biological research that there exists discrepancy in prefrontal cortex and cingulate cortex. As far as we know, it is the first time that the deep learning method has been used for the discrimination of ADHD with fMRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kooij, S.J.J., Bejerot, S., Blackwell, A., et al.: European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD. BMC Psychiatry 10(1), 67 (2010)

    Article  Google Scholar 

  2. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association, Arlington (2013)

    Google Scholar 

  3. Huettel, S.A., Song, A.W., McCarthy, G.: Functional magnetic resonance imaging. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  4. Wolf, R.C., Plichta, M.M., Sambataro, F., et al.: Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention‐deficit/hyperactivity disorder. Human Brain Mapping 30(7), 2252–2266 (2009)

    Article  Google Scholar 

  5. Rubia, K., Cubillo, A., Smith, A.B., et al.: Disorder‐specific dysfunction in right inferior prefrontal cortex during two inhibition tasks in boys with attention‐deficit hyperactivity disorder compared to boys with obsessive–compulsive disorder. Human Brain Mapping 31(2), 287–299 (2010)

    Google Scholar 

  6. Zhu, C.Z., Zang, Y.F., Cao, Q.J., et al.: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40(1), 110–120 (2008)

    Article  Google Scholar 

  7. Milham, M.P.: Open neuroscience solutions for the connectome-wide association era. Neuron 73(2), 214–218 (2012)

    Article  Google Scholar 

  8. Eloyan, A., Muschelli, J., Nebel, M.B., et al.: Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging (2012)

    Google Scholar 

  9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bengio, Y., Lamblin, P., Popovici, D., et al.: Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 19–153 (2007)

    Google Scholar 

  12. Lee, H., Pham, P.T., Largman, Y., et al.: Unsupervised feature learning for audio classification using convolutional deep belief networks. In: NIPS, vol. 9, pp. 1096–1104 (2009)

    Google Scholar 

  13. Lee, H., Grosse, R., Ranganath, R., et al.: Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM 54(10), 95–103 (2011)

    Article  Google Scholar 

  14. Ranzato, M., Huang, F.J., Boureau, Y.L., et al.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  15. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of Deep Belief Networks for Natural Language Understanding

    Google Scholar 

  16. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14(8), 1771–1800 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Statistical parametric mapping, version 8 (2009), http://www.fil.ion.ucl.ac.uk/spm/

  18. Huettel, S.A., Song, A.W., McCarthy, G.: Functional magnetic resonance imaging. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  19. Wanchai. Cortical Functions. Trans. Cranial Technologies ldt. (2012)

    Google Scholar 

  20. Bush, G., Valera, E.M., Seidman, L.J.: Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biological Psychiatry 57(11), 1273–1284 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kuang, D., Guo, X., An, X., Zhao, Y., He, L. (2014). Discrimination of ADHD Based on fMRI Data with Deep Belief Network. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics