[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Compact Teaching-Learning-Based Optimization Method

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

Population based heuristic optimization techniques, though powerful, are often limited by the memory size of hardware context when implemented on micro-controllers, embedded systems and commercial robots platforms etc. On the other hand, the teaching-learning based optimization algorithm (TLBO) is a recently proposed algorithm of high performance on both constrained and unconstrained optimization problems. In this paper, a new compact teachinglearning based optimization algorithm (cTLBO) is proposed to combine the strength of the original TLBO and reduce the memory requirement through a compact structure that utilizes an adaptive statistic description to replace the process of a population of solutions. Numerical results on test benchmark functions show that the new algorithm does not sacrifice the efficiency within the limited hardware resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E., Holland, J.H.: Genetic Algorithms And Machine Learning. Machine Learning 3(2), 95–99 (1988)

    Article  Google Scholar 

  2. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings of the IEEE World Congress on Computational in Telligence, pp. 69–73. IEEE (1998)

    Google Scholar 

  3. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  4. Mininno, E., Cupertino, F., Naso, D.: Real-Valued Compact Genetic Algorithms for Embedded Microcontroller Optimization. IEEE Transactions on Evolutionary Computation 12(2), 203–219 (2008)

    Article  Google Scholar 

  5. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The Compact Genetic Algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287–297 (1999)

    Article  Google Scholar 

  6. Gallagher, J.C., Vigraham, S., Kramer, G.: A Family Of Compact Genetic Algorithms for in trinsic Evolvable Hardware. IEEE Transactions on Evolutionary Computation 8(2), 111–126 (2004)

    Article  Google Scholar 

  7. Neri, F., Mininno, E.: Memetic Compact Differential Evolution for Cartesian Robot Control. IEEE Computational intelligence Magazine 5(2), 54–65 (2010)

    Article  Google Scholar 

  8. Neri, F., Iacca, G., Mininno, E.: Disturbed Exploitation Compact Differential Evolution for Limited Memory Optimization Problems. Information Sciences 181(12), 2469–2487 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact Differential Evolution. IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)

    Article  Google Scholar 

  10. Neri, F., Mininno, E., Iacca, G.: Compact Particle Swarm Optimization. Information Sciences 239, 96–121 (2013)

    Article  MathSciNet  Google Scholar 

  11. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. Computer Aided Design 43(3), 303–315 (2011)

    Article  Google Scholar 

  12. Rao, R.V., Patel, V.: An Improved Teaching-Learning-Based Optimization Algorithm for Solving Unconstrained Optimization Problems. Scientia Iranica (2012)

    Google Scholar 

  13. Crepinsek, M., Liu, S.-H., Mernik, L.: A Note on Teaching-Learningbased Optimization Algorithm. Information Sciences 212, 79–93 (2012)

    Article  Google Scholar 

  14. Waghmare, G.: Comments on A Note on Teaching-Learning-Based Optimization Algorithm. Information Sciences 229, 159–169 (2013)

    Article  Google Scholar 

  15. Niknam, T., Azizipanah-Abarghooee, R., Aghaei, J.: A New Modified Teaching-Learning Algorithm for Reserve Constrained Dynamic Economic Dispatch. IEEE Transactions on Power Systems 28(2), 749–763 (2013)

    Article  Google Scholar 

  16. Yang, Z., Li, K., Foley, A., Zhang, A.C.: A New Self-Learning Tlbo Algorithm for Rbf Neural Modelling Of Batteries in Electric Vehicles. In: 2014 IEEE World Congress on Computational intelligence. IEEE (2014)

    Google Scholar 

  17. Niknam, T., Fard, A.K., Baziar, A.: Multi-Objective Stochastic Distribution Feeder Reconfiguration Problem Considering Hydrogen And Thermal Energy Production byFuel Cell Power Plants. Energy 42(1), 563–573 (2012)

    Article  Google Scholar 

  18. Harik, G., Cantu-Paz, E., Goldberg, D.E., Miller, B.L.: The Gambler’s Ruin Problem, Genetic Algorithms, And The Sizing Of Populations. Evolutionary Computation 7(3), 231–253 (1999)

    Article  Google Scholar 

  19. Ahn, C.W., Ramakrishna, R.S.: Elitism-Based Compact Genetic Algorithms. IEEE Transactions on Evolutionary Computation 7(4), 367–385 (2003)

    Article  Google Scholar 

  20. Kramer, G.R., Gallagher, J.C., Raymer, M.: On The Relative Efficacies Of Cga Variants for in trinsic Evolvable Hardware; Population, Mutation, And Random Immigrants. In: Proceedings of the 2004 NASA/Dod Conference on Evolvable Hardware, 2004, pp. 225–230. IEEE (2004)

    Google Scholar 

  21. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Z., Li, K., Guo, Y. (2014). A New Compact Teaching-Learning-Based Optimization Method. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_72

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics