[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recognition of Human Action and Identification Based on SIFT and Watermark

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

This paper presents a fast and simple method for action recognition and identity at the same time. A watermark embedding as a 2-D wavelet in the training data at the first step to identify the identity of who makes the action. The proposed technique relies on detecting interest points using SIFT (scale invariant feature transform) from each frame of the video for action recognition. More specifically, we propose an action representation based on computing a rich set of descriptors from 2D-SIFT key points. Since most previous approaches to human action recognition typically focus on action classification or localization, these approaches usually ignore the information about human identity. A compact yet discriminative semantics visual vocabulary was built by a K-means for high-level representation. Finally a multi class linear Support Vector Machine (SVM) is utilized for classification. Our algorithm can not only categorize human actions contained in the video, but also verify the person who performs the action. We test our algorithm on three datasets: the KTH human motion dataset, Weizmann and our action dataset. Our results reflect the promise of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, Z., Jia, L.: Recognizing Human and Identity Based on Affine-SIFT. In: IEEE Symposium on Electrical & Electronics Engineering (2012)

    Google Scholar 

  2. Fabio, C.: Using Bilinear Models for View-invariant Action and Identity Recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, vol. 2 (June 2006)

    Google Scholar 

  3. khamis., S., Morariu, V.I., Larry, S.D.: A Flow Model for Joint Action Recognition and Identity Maintenance. In: IEEE (2012)

    Google Scholar 

  4. Langelaar, G., Setyawan, I., Lagendijk, R.: Watermarking Digital Image and Video Data. IEEE Signal Processing Magazine 17, 20–43 (2000)

    Article  Google Scholar 

  5. Meerwald, P., Uhl, A.: A Survey of Wavelet-domain Watermarking Algorithms. In: Proc. of SPIE, Electronics Imaging, Security and Watermarking of Multimedia Contents III, CA, USA (2001)

    Google Scholar 

  6. Wong, S.F., Cipolla, R.: Extracting Spatiotemporal Interest Points Using Global Information. In: Proc. of IEEE International Conference on Computer Vis ion (ICCV), pp. 1–8 (2007)

    Google Scholar 

  7. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of Human Action Categories using Spatial-temporal Words. In: Proceedings of the British Machine Vision Conference, vol. 79(3), pp. 299–318 (2008)

    Google Scholar 

  8. Duchenne, O., Laptev, I., Sivic, J., Bach, F., Ponce, J.: Automatic Annotation of Human Actions in Video. In: Proceedings of the International Conference On Computer Vision (ICCV 2009), Kyoto, Japan (September 2009)

    Google Scholar 

  9. Lowe, D.G.: Distinctive Image Features from Scale Invariant Key Points. J. Computer Vision, IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Zhu, G., Xu, C., Gao, W., Qingming, H.: Using Optical Flow and Support Vector Machine. Springer, Berlin (2006)

    Google Scholar 

  11. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. In: ICCV (2005)

    Google Scholar 

  12. Enrique, F.M., Angel, S., Jose, V.: Support Vector Machines Versus Multi-layer Perceptron for Efficient Off-line Sig-nature Recognition. In: Biometry and Artificial Vision Group(GAVAP), Madrid, Spain,

    Google Scholar 

  13. Xiaojun, Q.: An Efficient Wavelet-Based Watermarking Algorithm, Xiaojun.Qi@usu.edu

    Google Scholar 

  14. Gao, R.: Dynamic Feature Description in Human Action Recognition. M.Sc. Computer Science (2009)

    Google Scholar 

  15. Agreste, S., Guido, A., Daniela, P., Luigia, P.: An Image Adaptive, Wavelet-based Watermarking of Digital Images. J. of Computational and Applied Mathematics 210 (2007)

    Google Scholar 

  16. Lai, K.-T., Hsieh, C.-H., Lai, M.-F., Chen, M.-S.: Human Action Recognition Using Key Points Displacement. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 439–447. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Moussa, M.M., Fayek, M.B., Heba, A., Nemr, E.: An Enhanced Method for Human Action Recognition. Journal of Advanced Research (2013)

    Google Scholar 

  18. Lian, Z., Godil, A., Sun, X.: Visual Similarity Based 3D Shape Retrieval Using Bag-of-Features. In: IEEE Proceedings of the Shape Modeling International Conference (2010)

    Google Scholar 

  19. Sipiran, I., Bustos, B.: A Robust 3D Interest Points Detector Based on Harris Operator. Presented at the Proc. Euro-graphics Workshop on 3D Object Retrieval (3DOR 2010) (2010)

    Google Scholar 

  20. Schuldt, C., Laptev, I., Caputo, B.: Recognize Human Actions Local SVM Approach. In: IEEE Int. Conf. ICPR, vol. 3, pp. 32–36 (2004)

    Google Scholar 

  21. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior Recognition via Sparse Spatio-temporal Features. In: IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  22. Klaser, A., Marszaek, M., Schmid, C.: A Spatio-temporal Descriptor Based on 3D-Gradients. In: British Mach Vision Conf. BMVC (2008)

    Google Scholar 

  23. Zhang, Z., Hu, Y., Chan, S., Chia, L.-T.: Motion Context: A New Representation for Human Action Recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 817–829. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Chang, C., Lin, C.: LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. TIST (2011)

    Google Scholar 

  25. Fathi, A., Mori, G.: Action Recognition by Learning Mid-level Motion Features. In: Conference of CVPR IEEE (2008)

    Google Scholar 

  26. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-time Shapes. In: ICCV IEEE (2005)

    Google Scholar 

  27. Ke, Y., Sukthanka, R., Hebert, M.: Efficient Visual Event Detection Using Volumetric Features. In: ICCV IEEE (2005)

    Google Scholar 

  28. Sheikh, Y., Sheikh, M., Shah, M.: Exploring the space of a human action. In: ICCV IEEE, pp. 144–149 (2005)

    Google Scholar 

  29. Chen, M.Y., Hauptmann, A.: MoSIFT: Recognizing human actions in surveillance videos. In: Technological Report. Carnegie Mellon University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ali, K.H., Wang, T. (2014). Recognition of Human Action and Identification Based on SIFT and Watermark. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics