Abstract
We present some numerical results about the localization of zeros and poles of Chebyshev-Padé approximants from functions perturbed with random series. These results are a natural generalization of the Froissart’s numerical experiments with power series. Our results suggest that the Froissart doublets of Chebyshev-Padé approximants are located, with probability one, on the Joukowski transform image of the natural boundary of the random power series.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, G.A., Graves-Morris, P.R.: Padé Approximants, 2nd edn. Cambridge Univ. Press (1996)
Baker, G.A.: Defects and the convergence of Padé Approximants, LA-UR-99-1570, Los Alamos Nat. Lab. (1999)
Elliot, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comput. 18, 274–284 (1964)
Gilewicz, J.: Approximants de Padé. Lecture notes in Mathematics. Springer (1978)
Gilewicz, J., Truong-Van, B.: Froissart doublets in the Padé approximants and noise. In: Sendov, B. (ed.) Construtive Theory of Function 1987, Varna, pp. 145–151. Publishing House of Bulgarian Academy of Science (1987)
Olver, F.W., et al.: NIST Hanbook of Mathematical Functions. Cambridge Univ. Press (2010)
Matos, A.C.: Recursive computation of Padé-Legendre; approximants and some acceleration properties. Numerische Mathematik 89, 535–560 (2003)
Szegő, G.: Orthogonal Polynomials. AMS (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
de Matos, J.C., Matos, J., Rodrigues, M.J. (2014). On the Localization of Zeros and Poles of Chebyshev-Padé Approximants from Perturbed Functions. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8584. Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-09153-2_36
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09152-5
Online ISBN: 978-3-319-09153-2
eBook Packages: Computer ScienceComputer Science (R0)