Abstract
To address the priorities of the Public Healths, in particular those set by French’s Cancer Plans, it is necessary to develop spatial tools able to identify environmental risk factors. The emergence of numerous databases provides access to many environmental parameters that describe geographical living environments. However, those ones are only interesting if there are crossed with health indicators. Epidemiological databases contain spatiotemporal references but are not suited to the geographic modeling.
The EstimGRE method provides two morbid spatiotemporal indicators (m.st.i) adapted to the analysis of interactions between health and environment. It also leads to construct a third m.st.i which characterizes spaces with morbid Geographical Risk Exposures (GRE). Therefore, it enables to develop medical solutions and public policies to improve the environmental health of populations, in line with the sustainable development objectives. Propositions are applied to the LEA cohort. The EstimGRE algorithm is the name of the method proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ministère de l’Enseignement Supérieur et de la Recherche; Ministère de la Santé et des Sports : Pan Cancer 2009-2013. Institut National du Cancer (INCa). Boulogne-Billancourt, France (2009)
Grmek, M.-D.: Le concept de maladies émergentes. In: History and Philosophy of the Life Sciences, Napoli, Italy, vol. 15, pp. 281–296 (1993)
Salem, G.: Géographie de la santé, santé de la géographie. In: Espace, Population, Société, Paris, vol. 1, pp. 25–30 (1995)
Abramson, J.-H., Abramson, Z.-H.: Making Sense of Data: A Self-Instruction Manual on the Interpretation of Epidemiological Data. Oxford University Press, Oxford (1988)
Bailly, A.: La géographie du bien-être. Presses Universitaires de France, Paris (1981)
Zeitouni, K.: Analyse et extraction de connaissances des bases de données spatio-temporelles. In: Habilitation à Diriger des Recherches. Université de Verseilles Saint-Quentin-en-Yvelines, Paris (2006)
IPCS. Glossary of key exposure assement terminology. In: International pro-gramme on Chemical Safety, Harmonization Project Document, num. 1 (2004)
Peguy, C.-P.: L’horizontal et le vertical, RECLUS, Montpellier, France (1996)
Michel, G., Bordigoni, P., Simeoni, M.-C., Curtillet, C., Hoxha, S., Robitail, S., Thuret, I., Pall-Kondolff, P., Chambost, H., Orbicini, D., Auquier, P.: Health status and quality of life in long-term survivors of childhood leukaemia, the impact of haemato-poietic stem cell transplantation. Bone Marrow Transplantation 40(9), 897–904 (2007)
Dubois, D., Prades, H.: On the use of aggregation operations in information fusion processes. In: Fuzzy Sets and Systems, vol. 42, pp. 144–161. Elsevier (2004)
Bernard, P.-M., Lapointe, C.: Mesures statistiques en épidémiologie. Presse de l’Uni-versité du Québec, Quebec (2003)
Micosoft. Microsoft office, http://www.office.microsoft.com
ESRI. Esri solution SIG - ArGis.10, http://www.esrifrance.com
Institute for Statistics and Mathematics - R, http://www.cran.r-project.org
Saporta, G.: Probabilité, analyse des données et Statistique. Technip, Paris (2006)
Michel, G., Auquier, P.: Elaboration of an epidemiological weighting system to model sequelae geography. Public Health Laboratory, Marseille (2013)
Couet, C.: La mobilité résidentielle des adustes: Existe-t-il des “parcours type”? Dans portrait social. In: INSEE, Paris, pp. 159–179 (2006)
Marcotte, D.: Cours: GML6402, http://geo.polymtl.ca/~marcotte
Chernick, M.R.: Boostrap methods: A practitioner’s guide. Wiley, New-York (1999)
Tobler, W.: A Computer Movie Simulating Urban Growth in the Detroit Region. In: Economic Geography, pp. 234–240. Clark University, Worcester (1970)
Abramson, J.-H., Abramson, Z.-H.: Making Sense of Data: A Self-Instruction Manual on the Interpretation of Epidemiological Data. Oxford University Press, Oxford (1988)
Barnett, S., Roderick, P., Martin, D., Diamond, I., Wrigley, H.: Interrelations between three proxies of health care need at the small area level: an urban/rural comparison. Journal of Epidemiol Community Health 56(10), 754–761 (2002)
Chaix, B., Merlo, J., Chauvin, P.: Comparaison of spatial approach with the multi-level approach for investigating place effects on health: the example of halthcare utilisation in France. Journal of Epidemiology and Community Health 59(6), 517–526 (2005)
Brucker-Davis, F.: Effects of environmental sythetic chemical on thyroid function. Thyroid 1, 827–856 (1998)
Brook, R.H., Lohr, K.N., Chassin, M., Kosecoff, J., Fink, A., Solomon, D.: Geographic variations in the use of services: do they have any clinical significance? Health Affairs 3, 64–73 (1984)
Bailly, A., Beguin, H.: Introduction à la géographie humaine. Armand Colin, Paris (2005)
Dumont, G.-F.: Les Populations du monde, 2nd edn. Armand Colin, Paris (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bourrelly, S. (2014). Modeling Morbid Geographical Risk Exposure. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8582. Springer, Cham. https://doi.org/10.1007/978-3-319-09147-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-09147-1_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09146-4
Online ISBN: 978-3-319-09147-1
eBook Packages: Computer ScienceComputer Science (R0)