[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Amortised Resource Analysis and Typed Polynomial Interpretations

  • Conference paper
Rewriting and Typed Lambda Calculi (RTA 2014, TLCA 2014)

Abstract

We introduce a novel resource analysis for typed term rewrite systems based on a potential-based type system. This type system gives rise to polynomial bounds on the innermost runtime complexity. We relate the thus obtained amortised resource analysis to polynomial interpretations and obtain the perhaps surprising result that whenever a rewrite system \(\mathcal R\) can be well-typed, then there exists a polynomial interpretation that orients \(\mathcal R\). For this we adequately adapt the standard notion of polynomial interpretations to the typed setting.

This research is partly supported by FWF (Austrian Science Fund) project P25781.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static cost analysis. JAR 46 (2011)

    Google Scholar 

  2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, program termination, and complexity bounds of flowchart programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of term rewriting by dependency pairs. JAR 51, 27–56 (2013)

    Article  MathSciNet  Google Scholar 

  5. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Avanzini, M., Moser, G.: Tyrolean complexity tool: Features and usage. In: Proc. 24th RTA. LIPIcs, vol. 21, pp. 71–80 (2013)

    Google Scholar 

  7. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)

    Google Scholar 

  8. Tarjan, R.: Amortized computational complexity. SIAM J. Alg. Disc. Math. 6, 306–318 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, pp. 67–69. Cambridge University (1949)

    Google Scholar 

  10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)

    Google Scholar 

  11. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. JFP 11, 33–53 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In: Proc. 30th POPL, pp. 185–197. ACM (2003)

    Google Scholar 

  13. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations a way to control resources. TCS 412, 2776–2796 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial potential. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polymorphic recursion and partial big-step operational semantics. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 172–187. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Hofmann, M., Moser, G.: Amortised resource analysis and typed polynomial interpretations (extended version). CoRR, cs.LO (2014), http://arxiv.org/abs/1402.1922

  17. Jouannaud, J.P., Rubio, A.: The higher-order recursive path ordering. In: Proc. 14th LICS, pp. 402–411. IEEE Computer Society (1999)

    Google Scholar 

  18. TeReSe: Term Rewriting Systems. Cambridge Tracks in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)

    Google Scholar 

  19. Jost, S., Loidl, H.-W., Hammond, K., Scaife, N., Hofmann, M.: “Carbon Credits” for resource-bounded computations using amortised analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 354–369. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis. TOPLAS 34, 14 (2012)

    Article  Google Scholar 

  21. Hoffmann, J.: Types with Potential: Polynomial Resource Bounds via Automatic Amortized Analysis. PhD thesis, Ludwig-Maximilians-Universiät München (2011)

    Google Scholar 

  22. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termination using polynomial interpretations. JAR 34, 325–363 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hofmann, M., Moser, G. (2014). Amortised Resource Analysis and Typed Polynomial Interpretations. In: Dowek, G. (eds) Rewriting and Typed Lambda Calculi. RTA TLCA 2014 2014. Lecture Notes in Computer Science, vol 8560. Springer, Cham. https://doi.org/10.1007/978-3-319-08918-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08918-8_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08917-1

  • Online ISBN: 978-3-319-08918-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics