[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Learning of Sensory Primitives from Optical Flow Fields

  • Conference paper
From Animals to Animats 13 (SAB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8575))

Included in the following conference series:

Abstract

Adaptive behaviour of animats largely depends on the processing of their sensory information. In this paper, we examine the estimation of robot egomotion from visual input by unsupervised online learning. The input is a sparse optical flow field constructed from discrete motion detectors. The global flow field properties depend on the robot motion, the spatial distribution of motion detectors with respect to the robot body and the visual environment. We show how online linear Principal Component Analysis can be applied to this problem to enable a robot to continuously adapt to a changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berthold, O., Hafner, V.V.: Neural sensorimotor primitives for visioncontrolled flying robots. In: Workshop on Vision-based Closed-Loop Control and Navigation of Micro Helicopters in GPS-Denied Environments at IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2013 (2013), http://rpg.ifi.uzh.ch/docs/IROS13workshop/Berthold.pdf

  2. Lettvin, J.Y., et al.: What the Frog’s Eye Tells the Frog’s Brain. In: Proceedings of the IRE 47.11, pp. 1940–1951 (1959), doi:10.1109/JRPROC.1959.287207

    Google Scholar 

  3. Mussa-Ivaldi, F.A., Solla, S.A.: Neural Primitives for Motion Control. IEEE Journal of Oceanic Engineering 29, 640 (2004)

    Article  Google Scholar 

  4. Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences 12(8), 297–306 (1989)

    Article  Google Scholar 

  5. Bruss, A.R., Horn, B.K.P.: Passive navigation. Computer Vision, Graphics, and Image Processing 21(1), 3–20 (1983)

    Article  Google Scholar 

  6. Franz, M.O., Krapp, H.G.: Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biological Cybernetics 83(3), 185–197 (2000), http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/pdf81.pdf , doi:10.1007/s004220000163

    Article  Google Scholar 

  7. Longuet-Higgins, H.C., Prazdny, K.: The Interpretation of a Moving Retinal Image. Royal Society of London Proceedings Series B 208, 385–397 (1980)

    Article  Google Scholar 

  8. Horn, B.K.P.: Motion fields are hardly ever ambiguous. International Journal of Computer Vision 1(3), 259–274 (1988), http://dx.doi.org/10.1007/BF00127824 , doi:10.1007/BF00127824

    Article  Google Scholar 

  9. Verri, A., Poggio, T.: Motion field and optical flow: Qualitative properties. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(5), 490–498 (1989), doi:10.1109/34.24781

    Google Scholar 

  10. Krapp, H.G., Hengstenberg, B., Hengstenberg, R.: Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology 79, 1902–1917 (1998)

    Google Scholar 

  11. Dahmen, H.-J., Franz, M.O., Krapp, H.G.: Extracting Egomotion from Optic Flow: Limits of Accuracy and Neural Matched Filters. In: Motion Vision, pp. 143–168. Springer, Heidelberg (2001), http://dx.doi.org/10.1007/978-3-642-56550-2_8 , doi:10.1007/978-3-642-56550-2_8, ISBN: 978-3-642-62979-2

  12. Franz, M.O., Chahl, J.S.: Linear combinations of optic flow vectors for estimating self-motion: A real-world test of a neural model. In: Advances in Neural Information Processing Systems (NIPS), vol. 15, pp. 1319–1326. MIT Press (2002)

    Google Scholar 

  13. Fleet, D.J., et al.: Design and Use of Linear Models for Image Motion Analysis. International Journal of Computer Vision 36(3), 171–193 (2000), http://dx.doi.org/10.1023/A:1008156202475 , doi:10.1023/A:1008156202475, ISSN: 0920-5691

  14. Roberts, R., Potthast, C., Dellaert, F.: Learning general optical flow subspaces for egomotion estimation and detection of motion anomalies. In: CVPR, pp. 57–64. IEEE (2009), http://dblp.uni-trier.de/db/conf/cvpr/cvpr2009.htmlRobertsPD09 , ISBN: 978-1-4244-3992-8

  15. Barth, M., Ishiguro, H., Tsuji, S.: Determining Robot Egomotion from Motion Parallax Observed by an Active Camera. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, IJCAI 1991, vol. 2, pp. 1247–1253. Morgan Kaufmann Publishers Inc. (1991), http://dl.acm.org/citation.cfm?id=1631552.1631644 , ISBN: 1-55860-160- 0

  16. Guthier, T., Eggert, J., Willert, V.: Unsupervised Learning of Motion Patterns. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, vol. 20, pp. 323–328. Bruges (April 2012), http://tubiblio.ulb.tu-darmstadt.de/57795/

  17. Lichtensteiger, L., Eggenberger, P.: Evolving the morphology of a compound eye on a robot. In: 1999 Third European Workshop on Advanced Mobile Robots, Eurobot 1999, pp. 127–134 (1999), doi:10.1109/EURBOT.1999.827631

    Google Scholar 

  18. Briod, A., Zufferey, J.C., Floreano, D.: Automatically calibrating the viewing direction of optic-flow sensors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3956–3961 (2012), doi:10.1109/ICRA.2012.6225011

    Google Scholar 

  19. Ruesch, J., Ferreira, R., Bernardino, A.: Self-organization of Visual Sensor Topologies Based on Spatiotemporal Cross-Correlation. In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS, vol. 7426, pp. 259–268. Springer, Heidelberg (2012), http://dblp.unitrier.de/db/conf/sab/sab2012.html#RueschFB12

  20. Dong, F., et al.: Plenoptic cameras in real-time robotics. The International Journal of Robotics Research 32(2), 206–217 (2013), doi:10.1177/0278364912469420

    Google Scholar 

  21. Bengio, Y., Courville, A.C., Vincent, P.: Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Google Scholar 

  22. Pierce, D., Kuipers, B.: Map Learning with Uninterpreted Sensors and Effectors. Artificial Intelligence 92, 169–227 (1997), http://dblp.org/db/journals/ai/ai92.html#PierceK97

  23. Olsson, L., Nehaniv, C.L., Polani, D.: From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connection Science 18(2), 121–144 (2006), http://dblp.org/db/journals/connection/connection18.html#OlssonNP06

  24. Kaplan, F., Hafner, V.V.: Information-theoretic framework for unsupervised activity classification. Advanced Robotics 20(10), 1087–1103 (2006)

    Google Scholar 

  25. Philipona, D., O’Regan, J.K., Nadal, J.P.: Is there something out there?: Inferring space from sensorimotor dependencies. Neural Computation 15(9), 2029–2049 (2003)

    Google Scholar 

  26. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

    Google Scholar 

  27. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006), doi:10.1126/science.1127647

    Google Scholar 

  28. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics 59(4-5), 291–294 (1988), doi:10.1007/BF00332918

    Google Scholar 

  29. Haykin, S.: Neural networks - A comprehensive foundation. Pearson (1999)

    Google Scholar 

  30. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P., Lesire, C., Stinckwich, S.: Simulating Complex Robotic Scenarios with MORSE. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 197–208. Springer, Heidelberg (2012), http://morse.openrobots.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Berthold, O., Hafner, V.V. (2014). Unsupervised Learning of Sensory Primitives from Optical Flow Fields. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds) From Animals to Animats 13. SAB 2014. Lecture Notes in Computer Science(), vol 8575. Springer, Cham. https://doi.org/10.1007/978-3-319-08864-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08864-8_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08863-1

  • Online ISBN: 978-3-319-08864-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics