[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decision Rule Classifiers for Multi-label Decision Tables

  • Conference paper
Rough Sets and Intelligent Systems Paradigms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8537))

Abstract

Recently, multi-label classification problem has received significant attention in the research community. This paper is devoted to study the effect of the considered rule heuristic parameters on the generalization error. The results of experiments for decision tables from UCI Machine Learning Repository and KEEL Repository show that rule heuristics taking into account both coverage and uncertainty perform better than the strategies taking into account a single criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007), http://www.ics.uci.edu/~mlearn/

  2. Azad, M., Chikalov, I., Moshkov, M.: Optimization of decision rule complexity for decision tables with many-valued decisions. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 444–448 (October 2013)

    Google Scholar 

  3. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 55–63. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  4. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees for hierarchical multilabel classification: A case study in functional genomics. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 18–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  6. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)

    Article  MathSciNet  Google Scholar 

  9. Moshkov, M., Zielosko, B.: Combinatorial Machine Learning–A Rough Set Approach. SCI, vol. 360. Springer, Heidelberg (2011)

    Book  Google Scholar 

  10. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Bosten (1991)

    Book  Google Scholar 

  11. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehouse and Mining 3(3), 1–13 (2007)

    Article  Google Scholar 

  12. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer US (2010)

    Google Scholar 

  13. Wieczorkowska, A., Synak, P., Lewis, R., Raś, Z.W.: Extracting emotions from music data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 456–465. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Applied Intelligence 22(2), 135–147 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Alsolami, F., Azad, M., Chikalov, I., Moshkov, M. (2014). Decision Rule Classifiers for Multi-label Decision Tables. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds) Rough Sets and Intelligent Systems Paradigms. Lecture Notes in Computer Science(), vol 8537. Springer, Cham. https://doi.org/10.1007/978-3-319-08729-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08729-0_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08728-3

  • Online ISBN: 978-3-319-08729-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics