Abstract
Recently, multi-label classification problem has received significant attention in the research community. This paper is devoted to study the effect of the considered rule heuristic parameters on the generalization error. The results of experiments for decision tables from UCI Machine Learning Repository and KEEL Repository show that rule heuristics taking into account both coverage and uncertainty perform better than the strategies taking into account a single criterion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007), http://www.ics.uci.edu/~mlearn/
Azad, M., Chikalov, I., Moshkov, M.: Optimization of decision rule complexity for decision tables with many-valued decisions. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 444–448 (October 2013)
Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 55–63. Morgan Kaufmann Publishers Inc. (1998)
Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees for hierarchical multilabel classification: A case study in functional genomics. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 18–29. Springer, Heidelberg (2006)
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)
Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)
Moshkov, M., Zielosko, B.: Combinatorial Machine Learning–A Rough Set Approach. SCI, vol. 360. Springer, Heidelberg (2011)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Bosten (1991)
Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehouse and Mining 3(3), 1–13 (2007)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer US (2010)
Wieczorkowska, A., Synak, P., Lewis, R., Raś, Z.W.: Extracting emotions from music data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 456–465. Springer, Heidelberg (2005)
Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Applied Intelligence 22(2), 135–147 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Alsolami, F., Azad, M., Chikalov, I., Moshkov, M. (2014). Decision Rule Classifiers for Multi-label Decision Tables. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds) Rough Sets and Intelligent Systems Paradigms. Lecture Notes in Computer Science(), vol 8537. Springer, Cham. https://doi.org/10.1007/978-3-319-08729-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-08729-0_18
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08728-3
Online ISBN: 978-3-319-08729-0
eBook Packages: Computer ScienceComputer Science (R0)