Abstract
There exists a direct relation between fuzzy rough sets and fuzzy preorders. On the other hand, it is well known the existing parallelism between Formal Concept Analysis and Rough Set Theory. In both cases, Galois connections play a central role. In this work, we focus on adjunctions (also named isotone Galois connections) between fuzzy preordered sets; specifically, we study necessary conditions that have to be fulfilled in order such an adjunction to exist.
Partially supported by the Spanish Science Ministry projects TIN12-39353-C04-01 and TIN11-28084.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bělohlávek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4), 497–504 (1999)
Bělohlávek, R.: Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quartely 47(1), 111–116 (2001)
Bělohlávek, R., Osička, P.: Triadic fuzzy Galois connections as ordinary connections. In: IEEE Intl Conf. on Fuzzy Systems (2012)
Bodenhofer, U.: A similarity-based generalization of fuzzy orderings preserving the classical axioms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(5), 593–610 (2000)
Bodenhofer, U.: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137(1), 113–136 (2003)
Bodenhofer, U., Klawonn, F.: A formal study of linearity axioms for fuzzy orderings. Fuzzy Sets and Systems 145(3), 323–354 (2004)
Bodenhofer, U., De Baets, B., Fodor, J.: A compendium of fuzzy weak orders: Representations and constructions. Fuzzy Sets and Systems 158(8), 811–829 (2007)
Börner, F.: Basics of Galois connections. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 38–67. Springer, Heidelberg (2008)
Castellini, G., Koslowski, J., Strecker, G.E.: Categorical closure operators via Galois connections. Mathematical Research 67, 72–72 (1992)
Cohen, D., Creed, P., Jeavons, P., Živný, S.: An algebraic theory of complexity for valued constraints: Establishing a Galois connection. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)
Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: generalization of the rough set theory. Intl J. of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)
Denecke, K., Erné, M., Wismath, S.L.: Galois connections and applications, vol. 565. Springer (2004)
Djouadi, Y., Prade, H.: Interval-valued fuzzy Galois connections: Algebraic requirements and concept lattice construction. Fundamenta Informaticae 99(2), 169–186 (2010)
Frascella, A.: Fuzzy Galois connections under weak conditions. Fuzzy Sets and Systems 172(1), 33–50 (2011)
García, J.G., Mardones-Pérez, I., de Prada-Vicente, M.A., Zhang, D.: Fuzzy Galois connections categorically. Math. Log. Q. 56(2), 131–147 (2010)
García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On Galois connections and Soft Computing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 224–235. Springer, Heidelberg (2013)
García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On the construction of fuzzy Galois connections. In: Proc. of XVII Spanish Conference on Fuzzy Logic and Technology, pp. 99–102 (2014)
García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez, F.J.: Generating isotone Galois connections on an unstructured codomain. In: Proc. of Information Processing and Management of Uncertainty in Knowlegde-Based Systems (IPMU) (to appear, 2014)
García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez-Sanchez, F.J.: On the Existence of Isotone Galois Connections between Preorders. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS, vol. 8478, pp. 67–79. Springer, Heidelberg (2014)
Georgescu, G., Popescu, A.: Non-commutative fuzzy Galois connections. Soft Computing 7(7), 458–467 (2003)
Guo, L., Zhang, G.-Q., Li, Q.: Fuzzy closure systems on L-ordered sets. Mathematical Logic Quarterly 57(3), 281–291 (2011)
Järvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75, 315–330 (2007)
Konecny, J.: Isotone fuzzy Galois connections with hedges. Information Sciences 181(10), 1804–1817 (2011)
Kuznetsov, S.: Galois connections in data analysis: Contributions from the soviet era and modern russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005)
Li, F., Liu, Z.: Concewpt lattice based on the rough sets. Intl J. of Advanced Intelligence 1, 141–151 (2009)
Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer science applications. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 299–312. Springer, Heidelberg (1986)
Mu, S.-C., Oliveira, J.: Programming from Galois connections. Journal of Logic and Algebraic Programming 81(6), 680–704 (2012)
Propp, J.: A Galois connection in the social network. Mathematics Magazine 85(1), 34–36 (2012)
Wolski, M.: Galois connections and data analysis. Fundamenta Informaticae 60, 401–415 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M. (2014). On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds) Rough Sets and Current Trends in Computing. RSCTC 2014. Lecture Notes in Computer Science(), vol 8536. Springer, Cham. https://doi.org/10.1007/978-3-319-08644-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-08644-6_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08643-9
Online ISBN: 978-3-319-08644-6
eBook Packages: Computer ScienceComputer Science (R0)