[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8536))

Included in the following conference series:

Abstract

There exists a direct relation between fuzzy rough sets and fuzzy preorders. On the other hand, it is well known the existing parallelism between Formal Concept Analysis and Rough Set Theory. In both cases, Galois connections play a central role. In this work, we focus on adjunctions (also named isotone Galois connections) between fuzzy preordered sets; specifically, we study necessary conditions that have to be fulfilled in order such an adjunction to exist.

Partially supported by the Spanish Science Ministry projects TIN12-39353-C04-01 and TIN11-28084.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bělohlávek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4), 497–504 (1999)

    Google Scholar 

  2. Bělohlávek, R.: Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quartely 47(1), 111–116 (2001)

    Google Scholar 

  3. Bělohlávek, R., Osička, P.: Triadic fuzzy Galois connections as ordinary connections. In: IEEE Intl Conf. on Fuzzy Systems (2012)

    Google Scholar 

  4. Bodenhofer, U.: A similarity-based generalization of fuzzy orderings preserving the classical axioms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(5), 593–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodenhofer, U.: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137(1), 113–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodenhofer, U., Klawonn, F.: A formal study of linearity axioms for fuzzy orderings. Fuzzy Sets and Systems 145(3), 323–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodenhofer, U., De Baets, B., Fodor, J.: A compendium of fuzzy weak orders: Representations and constructions. Fuzzy Sets and Systems 158(8), 811–829 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Börner, F.: Basics of Galois connections. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 38–67. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Castellini, G., Koslowski, J., Strecker, G.E.: Categorical closure operators via Galois connections. Mathematical Research 67, 72–72 (1992)

    MathSciNet  Google Scholar 

  10. Cohen, D., Creed, P., Jeavons, P., Živný, S.: An algebraic theory of complexity for valued constraints: Establishing a Galois connection. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: generalization of the rough set theory. Intl J. of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)

    Google Scholar 

  12. Denecke, K., Erné, M., Wismath, S.L.: Galois connections and applications, vol. 565. Springer (2004)

    Google Scholar 

  13. Djouadi, Y., Prade, H.: Interval-valued fuzzy Galois connections: Algebraic requirements and concept lattice construction. Fundamenta Informaticae 99(2), 169–186 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Frascella, A.: Fuzzy Galois connections under weak conditions. Fuzzy Sets and Systems 172(1), 33–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. García, J.G., Mardones-Pérez, I., de Prada-Vicente, M.A., Zhang, D.: Fuzzy Galois connections categorically. Math. Log. Q. 56(2), 131–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On Galois connections and Soft Computing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 224–235. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On the construction of fuzzy Galois connections. In: Proc. of XVII Spanish Conference on Fuzzy Logic and Technology, pp. 99–102 (2014)

    Google Scholar 

  18. García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez, F.J.: Generating isotone Galois connections on an unstructured codomain. In: Proc. of Information Processing and Management of Uncertainty in Knowlegde-Based Systems (IPMU) (to appear, 2014)

    Google Scholar 

  19. García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez-Sanchez, F.J.: On the Existence of Isotone Galois Connections between Preorders. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS, vol. 8478, pp. 67–79. Springer, Heidelberg (2014)

    Google Scholar 

  20. Georgescu, G., Popescu, A.: Non-commutative fuzzy Galois connections. Soft Computing 7(7), 458–467 (2003)

    MATH  Google Scholar 

  21. Guo, L., Zhang, G.-Q., Li, Q.: Fuzzy closure systems on L-ordered sets. Mathematical Logic Quarterly 57(3), 281–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Järvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75, 315–330 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Konecny, J.: Isotone fuzzy Galois connections with hedges. Information Sciences 181(10), 1804–1817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuznetsov, S.: Galois connections in data analysis: Contributions from the soviet era and modern russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Li, F., Liu, Z.: Concewpt lattice based on the rough sets. Intl J. of Advanced Intelligence 1, 141–151 (2009)

    Google Scholar 

  26. Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer science applications. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 299–312. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  27. Mu, S.-C., Oliveira, J.: Programming from Galois connections. Journal of Logic and Algebraic Programming 81(6), 680–704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Propp, J.: A Galois connection in the social network. Mathematics Magazine 85(1), 34–36 (2012)

    Article  MATH  Google Scholar 

  29. Wolski, M.: Galois connections and data analysis. Fundamenta Informaticae 60, 401–415 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M. (2014). On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds) Rough Sets and Current Trends in Computing. RSCTC 2014. Lecture Notes in Computer Science(), vol 8536. Springer, Cham. https://doi.org/10.1007/978-3-319-08644-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08644-6_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08643-9

  • Online ISBN: 978-3-319-08644-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics