[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Split Dictionaries for In-memory Column Stores in Mixed Workload Environments

  • Conference paper
Databases Theory and Applications (ADC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8506))

Included in the following conference series:

  • 1170 Accesses

Abstract

Columnar in-memory databases use dictionary encoding as a compression technique, replacing long and frequently occurring values with short integers. Sorted dictionaries allow for more efficient query processing as comparisons can be performed directly on the compressed data whereas unsorted dictionaries are faster when inserting new values.

In this work, we propose a new type of dictionary compression called Split Dictionaries. These organize their values in fixed-sized splits, enabling fast inserts and comparable query performance while significantly reducing maintenance costs. We present a detailed performance analysis regarding inserts, range queries, and the merge process as well as a memory usage model. We argue that adjusting the dictionary size allows for a more balanced trade-off especially in mixed workload environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA database: Data management for modern business applications. SIGMOD (2012)

    Google Scholar 

  2. Grund, M., Krueger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P., Madden, S.: HYRISE—A Main Memory Hybrid Storage Engine. In: VLDB (2010)

    Google Scholar 

  3. Hildenbrand, S.: Scaling Out Column Stores: Data, Queries, and Transactions. PhD thesis, ETH Zurich (2012)

    Google Scholar 

  4. Kemper, A., Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. In: ICDE (2011)

    Google Scholar 

  5. Krüger, J., Kim, C., Grund, M., Satish, N., Schwalb, D., Chhugani, J., Plattner, H., Dubey, P., Zeier, A.: Fast Updates on Read-Optimized Databases Using Multi-Core CPUs. In: VLDB (2011)

    Google Scholar 

  6. Lemke, C., Sattler, K.-U., Faerber, F., Zeier, A.: Speeding up queries in column stores. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 117–129. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. MacNicol, R., French, B.: Sybase IQ Multiplex - Designed For Analytics. In: VLDB (2004)

    Google Scholar 

  8. Mühe, H., Kemper, A., Neumann, T.: Executing Long-Running Transactions in Synchronization-Free Main Memory Database Systems. In: CIDR (2013)

    Google Scholar 

  9. Plattner, H.: A Common Database Approach for OLTP and OLAP Using an In-Memory Column Database. In: SIGMOD (2009)

    Google Scholar 

  10. Psaroudakis, I., Scheuer, T., May, N.: Task Scheduling for Highly Concurrent Analytical and Transactional Main-Memory Workloads. In: ADMS in Conjunction with VLDB (2013)

    Google Scholar 

  11. Schwalb, D., Faust, M., Krueger, J., Plattner, H.: Physical Column Organization in In-Memory Column Stores. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 48–63. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Sikka, V., Färber, F., Lehner, W., Cha, S.K., Peh, T., Bornhövd, C.: Efficient Transaction Processing in SAP HANA Database - The End of a Column Store Myth. In: SIGMOD (2012)

    Google Scholar 

  13. Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E.: C-store: A Column-oriented DBMS. In: VLDB (2005)

    Google Scholar 

  14. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.: SIMD-Scan: Ultra Fast in-Memory Table Scan Using on-Chip Vector Processing Units. In: VLDB (2009)

    Google Scholar 

  15. Zukowski, M., Boncz, P., Nes, N., Heman, S.: MonetDB/X100—A DBMS in the CPU cache. IEEE Data Engineering Bulletin (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schwalb, D., Dreseler, M., Faust, M., Wust, J., Plattner, H. (2014). Split Dictionaries for In-memory Column Stores in Mixed Workload Environments. In: Wang, H., Sharaf, M.A. (eds) Databases Theory and Applications. ADC 2014. Lecture Notes in Computer Science, vol 8506. Springer, Cham. https://doi.org/10.1007/978-3-319-08608-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08608-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08607-1

  • Online ISBN: 978-3-319-08608-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics