[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formalization of Complex Vectors in Higher-Order Logic

  • Conference paper
Intelligent Computer Mathematics (CICM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8543))

Included in the following conference series:

Abstract

Complex vector analysis is widely used to analyze continuous systems in many disciplines, including physics and engineering. In this paper, we present a higher-order-logic formalization of the complex vector space to facilitate conducting this analysis within the sound core of a theorem prover: HOL Light. Our definition of complex vector builds upon the definitions of complex numbers and real vectors. This extension allows us to extensively benefit from the already verified theorems based on complex analysis and real vector analysis. To show the practical usefulness of our library we adopt it to formalize electromagnetic fields and to prove the law of reflection for the planar waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afshar, S.K., Aravantinos, V., Hasan, O., Tahar, S.: A toolbox for complex linear algebra in HOL Light. Technical Report, Concordia University, Montreal, Canada (2014)

    Google Scholar 

  2. Afshar, S.K., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan, O., Tahar, S.: Formal analysis of optical systems. Mathematics in Computer Science 8(1) (2014)

    Google Scholar 

  3. Chaieb, A.: Multivariate Analysis (2014), http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Multivariate_Analysis

  4. Gibbs, J.W.: Elements of Vectors Analysis. Tuttle, Morehouse & Taylor (1884)

    Google Scholar 

  5. Harrison, J.: Formalizing basic complex analysis. In: From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, pp. 151–165. University of Białystok (2007)

    Google Scholar 

  6. Harrison, J.: HOL Light: An Overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Harrison, J.: The HOL Light theory of Euclidean space. Journal of Automated Reasoning 50(2), 173–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L., Feron, E., Perez, G., Ascariz, P.: PVS linear algebra libraries for verification of control software algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 147–161. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. LePage, W.R.: Complex variables and the Laplace transform for engineers. Dover Publications (1980)

    Google Scholar 

  10. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension linear spaces with application to quantum theory. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Scharnhorst, K.: Angles in complex vector spaces. Acta Applicandae Mathematica 69(1), 95–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stein, J.: Linear Algebra (2014), http://coq.inria.fr/pylons/contribs/view/LinAlg/trunk

  13. Tallack, J.C.: Introduction to Vector Analysis. Cambridge University Press (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Afshar, S.K., Aravantinos, V., Hasan, O., Tahar, S. (2014). Formalization of Complex Vectors in Higher-Order Logic. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08434-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08433-6

  • Online ISBN: 978-3-319-08434-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics