[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Linear Kernel for Undirected Planar Feedback Vertex Set: Smaller and Simpler

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8546))

Included in the following conference series:

Abstract

We show that any instance I of the Feedback Vertex Set problem in undirected planar graphs can be reduced to an equivalent instance I′ such that (i) the size of the instance and the size of the minimum feedback vertex set do not increase, (ii) and the size of the minimum feedback vertex set in I′ is at least \({\frac{1}{29}}\) of the number of vertices in I′. This implies a 29k kernel for this problem with parameter k being the size of the feedback vertex set. Our result improves the previous results of 97k and 112k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Bou Khuzam, M.: An improved kernel for the undirected planar feedback vertex set problem. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 264–273. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  3. Bodlaender, H.L., Penninkx, E.: A Linear Kernel for Planar Feedback Vertex Set. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., van Dijk, T.C.: A Cubic Kernel for Feedback Vertex Set and Loop Cutset. Theory Comput. Syst. 46(3), 566–597 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55, 1–19 (2008)

    MathSciNet  Google Scholar 

  9. Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA 2010, Philadelphia, PA, USA, pp. 503–510 (2010)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  13. Guo, J., Gramm, J., Huffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Razgon, I.: Computing minimum directed feedback vertex set in O(1.9977n). In: 10th Italian Conference on Theoretical Computer Science, ICTCS 2007, Rome, Italy, pp. 70–81 (2007)

    Google Scholar 

  16. Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edn. Addison-Wesley (1994)

    Google Scholar 

  17. Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Transactions on Algorithms 6(2) (2010)

    Google Scholar 

  18. Xiao, M., Nagamochi, H.: An Improved Exact Algorithm for Undirected Feedback Vertex Set. Journal of Combinatorial Optimization (2014), doi: 10.1007/s10878-014-9737-x; A preliminary version appears as: Xiao, M., Nagamochi, H.: An Improved Exact Algorithm for Undirected Feedback Vertex Set. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 153–164. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Xiao, M. (2014). A New Linear Kernel for Undirected Planar Feedback Vertex Set: Smaller and Simpler. In: Gu, Q., Hell, P., Yang, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2014. Lecture Notes in Computer Science, vol 8546. Springer, Cham. https://doi.org/10.1007/978-3-319-07956-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07956-1_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07955-4

  • Online ISBN: 978-3-319-07956-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics