Abstract
We show that solving jigsaw puzzles requires Θ(n 2) edge matching comparisons, making them as hard as their trivial upper bound. This result generalises to puzzles of all shapes, and is applicable to both pictorial and apictorial puzzles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Norgate, M.: Cutting borders: Dissected maps and the origins of the jigsaw puzzle. Cartogr. J. 44(4), 342–350 (2007)
Yao, F.H., Shao, G.F.: A shape and image merging technique to solve jigsaw puzzles. Pattern Recogn. Lett. 24, 1819–1835 (2003)
Freeman, H., Garder, L.: Apictorial jigsaw puzzles: The computer solution of a problem in pattern recognition. IEEE Trans. Electron. Comput. EC-13, 118–127 (1964)
Kleber, F., Sablatnig, R.: Scientific puzzle solving: current techniques and applications. In: Computer Applications to Archaeology (CAA 2009), Williamsburg, Virginia (March 2009)
Kong, W., Kimia, B.B.: On solving 2D and 3D puzzles using curve matching. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii (December 2001)
Radack, G.M., Badler, N.I.: Jigsaw puzzle matching using a boundary-centered polar encoding. Comput. Vision Graph. 19, 1–17 (1982)
Webster, R.W., Ross, P.W., Lafollette, P.S., Stafford, R.L.: A computer vision system that assembles canonical jigsaw puzzles using the euclidean skeleton and Isthmus critical points. In: IAPR Workshop on Machine Vision Applications (MVA 1990), Tokyo, IAPR, pp. 118–127 (November 1990)
Gallagher, A.C.: Jigsaw puzzles with pieces of unknown orientation. In: 25th Conf. Computer Vision and Pattern Recognition (CVPR 2012), Providence, Rhode Island (June 2012)
Sağıroğlu, M.Ş., Erçil, A.: Optimization for automated assembly of puzzles. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research 18(2), 321–338 (2010)
Wolfson, H., Schonberg, E., Kalvin, A., Lamdan, Y.: Solving jigsaw puzzles by computer. Ann. Oper. Res. 12(1-4), 51–64 (1988)
Arvind, V., Köbler, J.: Graph isomorphism is low for ZPP(NP) and other lowness results. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 431–442. Springer, Heidelberg (2000)
Arvind, V., Kukur, P.P.: Graph isomorphism is in SPP. Inform. Comput. 204(5), 835–852 (2006)
Köbler, J., Schoöning, U., Torán, J.: Graph isomorphism is low for PP. Comput. Complex. 2(4), 301–330 (1992)
McKay, B.D.: Practical graph isomorphism. In: 10th Manitoba Conf. Numerical Mathematics and Computing (Winnipeg, 1980). Congressus Numerantium, vol. 30, pp. 45–86 (1981)
Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd ACM Symp. Theory of Computing (STOC), pp. 151–158 (1971)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co (1979)
Gröger, H.D.: On the randomized complexity of monotone graph properties. Acta Cybernet. 10(3), 119–127 (1992)
Ullman, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)
Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)
Gindre, F., Trejo Pizzo, D.A., Barrera, G.: Daniela Lopez De Luise, M.: A criterion-based genetic algorithm solution to the jigsaw puzzle NP-complete problem. In: Proc. World Congress on Engineering and Computer Science (WCECS 2010), San Francisco (October 2010)
Goldberg, D., Malon, C., Bern, M.: A global approach to automatic solution of jigsaw puzzles. Comput. Geom. 28(2-3), 165–174 (2004)
Gwee, B.H., Lim, M.H.: Polyominoes tiling by a genetic algorithm. Comput. Optim. Appl. 6(3), 273–291 (1996)
Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–65 (1982)
Demaine, E.D., Demaine, M.L.: Jigsaw puzzles, edge matching, and polyomino packing: connections and complexity. Graphs Combin. 23(suppl. 1), 195–208 (2007)
Hall, P.: On representatives of subsets. J. London Math. Soc. 10(1), 26–30 (1935)
Halmos, P.R., Vaughan, H.E.: The marriage problem. Am. J. Math. 72, 214–215 (1950)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Brand, M. (2014). No Easy Puzzles: A Hardness Result for Jigsaw Puzzles. In: Ferro, A., Luccio, F., Widmayer, P. (eds) Fun with Algorithms. FUN 2014. Lecture Notes in Computer Science, vol 8496. Springer, Cham. https://doi.org/10.1007/978-3-319-07890-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-07890-8_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07889-2
Online ISBN: 978-3-319-07890-8
eBook Packages: Computer ScienceComputer Science (R0)