Abstract
Internet has become the largest library through the history of humanity. Having such a big library made the search process more complicated. In fact, traditional search engines answer users by sending back the same results to different users having expressed different information needs and different preferences. A significant part of difficulties [1],[4] is due to vocabulary problems (polysemy, synonymy...). Such problems trigger a strong need for personalizing the search results based on user preferences. The goal of personalized information [11] is to generate meaningful results to a collection of information users that may interest them using user’s profile. This paper presents a personalized information retrieval approach based on user profile. User profile is built from the acquisition of explicit and implicit user data. The proposed approach also presents a semantic-based optimization method for user query. The system uses user profile to construct virtual communities. Moreover, it uses the user’s navigation data to predict user’s preferences in order to update virtual communities.
Chapter PDF
Similar content being viewed by others
References
Research, I.A., Zien, J., Meyer, J., Tomlin, J.: Web query characteristics and their implications on search engines. In: Zien, J., Meyer, J.O., Tomlin, J. (eds.) Proceedings of the 10th International WWW Conference, Hong Kong (2001)
Robertson, S.: The probability ranking principle in modern information retrieval. Journal of Documentation 33(4), 294–304 (1977)
Allan, J., et al.: Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval. SIGIR. University of Massachusetts Amherst (September 2002)
Mianowska, B., Nguyen, N.T.: Tuning user profiles based on analyzing dynamic preference in document retrieval systems. Multimedia Tools and Applications (2012), http://dx.doi.org/10.1007/s11042-012-1145-6
Bouidghaghen, O., Tamine, L., Boughanem, M.: Personalizing mobile web search for location sensitive queris. In: Proceedings of the 2011 IEEE 12th International Conference on Mobile Data Management, Lulea, Sweden, vol. 01, pp. 110–118 (2011)
Ghosh, R., Dekhil, M.: Discovering user profiles. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1233–1234. Polytechnic University in Madrid (2009)
Treur, J., Umair, M.: An agent model integrating an adaptive model for environmental dynamics. International Journal of Intelligent Information and Database Systems 5(1), 201–228 (2012)
Tanudjaja, J., Mui, L.: Persona: A contextualized and personalized web search. In: Proc. 35th Hawaii International Conference on System Sciences, Big Island, Hawaii, p. 53 (January 2002)
Trajkova, J., Gauch, S.: Improving ontology-based user pro_les. In: Proceedings of the 8th Conference of Recherche d’Information Assistée par Ordinateur, April 26-28, pp. 380–389. University of Avignon, Vaucluse (2004)
Wen, J., Lao, N., Ma, W.Y.: Probabilistic model for contextual retrieval. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Shefeld, United Kingdom, pp. 57–63 (August 2004)
Tamine, L., Boughanem, M., Zemirli, W.N.: Exploiting multi-evidence from multiple user’s interests to personalizing information retrieval. In: Badr, Y., Chbeir, R., Pichappan, P. (eds.) IEEE International Conference on Digital Information Management (ICDIM 2007), Lyon, France, pp. 7–12. IEEE Engineering Management Society (October 2007)
Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the World Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)
Min, J., Jones, G.J.F.: Building user interest profiles from Wikipedia clusters. In: The Workshop on Enriching Information Retrieval (ENIR 2011) at Special Interest Group on Information Retrieval (SIGIR), Beijing, China (July 2011)
Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.): ECIR 2006. LNCS, vol. 3936. Springer, Heidelberg (2006)
Maleszka, M., Mianowska, B., Nguyen, N.-T.: A heuristic method for collaborative recommendation using hierarchical user profiles. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS (LNAI), vol. 7653, pp. 11–20. Springer, Heidelberg (2012)
Stermsek, G., Strembeck, M., Neumann, G.: User profile refinement using explicit user interest modeling. In: GI-Jahrestagung Conference, pp. 289–293. Technical University in Berlin (2007)
Esparza, S.G., O’Mahony, M.P., Smyth, B.: Mining the real-time web: a novel approach to product recommendation. Knowledge-Based Systems 29, 3–11 (2012)
Formoso, V., Fernandez, D., Cacheda, F., Carneiro, V.: Using profile expansion techniques to alleviate the new user problem. Information Processing and Management (2012), http://dx.doi.org/10.1016/j.ipm.2012.07.005
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Harbaoui, A., Sidhom, S., Ghenima, M., Ben Ghezala, H. (2014). Personalized Information Retrieval: Application to Virtual Communities. In: Yamamoto, S. (eds) Human Interface and the Management of Information. Information and Knowledge Design and Evaluation. HIMI 2014. Lecture Notes in Computer Science, vol 8521. Springer, Cham. https://doi.org/10.1007/978-3-319-07731-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-07731-4_43
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07730-7
Online ISBN: 978-3-319-07731-4
eBook Packages: Computer ScienceComputer Science (R0)