[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

Abstract

In a number of real-life applications, the user is interested in analyzing non vectorial data, for which kernels are useful tools that embed data into an (implicit) Euclidean space. However, when using such approaches with prototype-based methods, the computational time is related to the number of observations (because the prototypes are expressed as convex combinations of the original data). Also, a side effect of the method is that the interpretability of the prototypes is lost. In the present paper, we propose to overcome these two issues by using a bagging approach. The results are illustrated on simulated data sets and compared to alternatives found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International Conference on Knowledge-Based Intelligence Engineering Systems and Applied Technologies, pp. 317–320 (2000)

    Google Scholar 

  2. Lau, K., Yin, H., Hubbard, S.: Kernel self-organising maps for classification. Neurocomputing 69, 2033–2040 (2006)

    Article  Google Scholar 

  3. Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257–1273 (2008)

    Article  Google Scholar 

  4. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  Google Scholar 

  5. Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational SOM. Neurocomputing (2013) (forthcoming)

    Google Scholar 

  6. Olteanu, M., Villa-Vialaneix, N., Cierco-Ayrolles, C.: Multiple kernel self-organizing maps. In: Verleysen, M. (ed.) XXIst European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 83–88. i6doc.com (2013)

    Google Scholar 

  7. Massoni, S., Olteanu, M., Villa-Vialaneix, N.: Which distance use when extracting typologies in sequence analysis? An application to school to work transitions. In: International Work Conference on Artificial Neural Networks (IWANN 2013), Puerto de la Cruz, Tenerife (2013)

    Google Scholar 

  8. Hofmann, D., Hammer, B.: Sparse approximations for kernel learning vector quantization. In: Verleysen, M. (ed.) Proceedings of XXIst European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 549–554. i6doc.com (2013)

    Google Scholar 

  9. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3), 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  10. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Petrakieva, L., Fyfe, C.: Bagging and bumping self organising maps. Computing and Information Systems Journal 9, 69–77 (2003)

    Google Scholar 

  12. Vrusias, B., Vomvoridis, L., Gillam, L.: Distributing SOM ensemble training using grid middleware. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN 2007), pp. 2712–2717 (2007)

    Google Scholar 

  13. Baruque, B., Corchado, E.: Fusion methods for unsupervised learning ensembles. SCI, vol. 322. Springer, Heidelberg (2011)

    Book  Google Scholar 

  14. Villa, N., Rossi, F.: A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In: 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany, Neuroinformatics Group, Bielefield University (2007)

    Google Scholar 

  15. Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralic, J., Polzlbauer, G., Rauber, A. (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA 2004), Sliezsky dom, Vysoke Tatry, Slovakia, pp. 67–82. Elfa Academic Press (2004)

    Google Scholar 

  16. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS Workshop on Social Network and Social Media Analysis (2012)

    Google Scholar 

  17. Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: a deterministic annealing approach. Neurocomputing 73(7-9), 1142–1163 (2010)

    Article  Google Scholar 

  18. Fouss, F., Pirotte, A., Renders, J., Saerens, M.: Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19(3), 355–369 (2007)

    Article  Google Scholar 

  19. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  20. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics, P09008 (2005)

    Google Scholar 

  21. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical Review, E 69, 026113 (2004)

    Article  Google Scholar 

  22. Fruchterman, T., Reingold, B.: Graph drawing by force-directed placement. Software, Practice and Experience 21, 1129–1164 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Mariette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mariette, J., Olteanu, M., Boelaert, J., Villa-Vialaneix, N. (2014). Bagged Kernel SOM. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics