Abstract
This paper presents SOMbrero, a new R package for self-organizing maps. Along with the standard SOM algorithm for numeric data, it implements self-organizing maps for contingency tables (“Korresp”) and for dissimilarity data (“relational SOM”), all relying on stochastic (i.e., on-line) training. It offers many graphical outputs and diagnostic tools, and comes with a user-friendly web graphical interface, based on the shiny R package.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kohonen, T.: Self-Organizing Maps, 3rd edn., vol. 30. Springer, Heidelberg (2001)
Cottrell, M., Letremy, P., Roy, E.: Analyzing a contingency table with Kohonen maps: a factorial correspondence analysis. In: Mira, J., Cabestany, J., Prieto, A.G. (eds.) IWANN 1993. LNCS, vol. 686, pp. 305–311. Springer, Heidelberg (1993)
Kohohen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21, 19–30 (1998)
Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International Conference on Knowledge-Based Intelligence Engineering Systems and Applied Technologies, pp. 317–320 (2000)
Andras, P.: Kernel-Kohonen networks. International Journal of Neural Systems 12, 117–135 (2002)
Villa, N., Rossi, F.: A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In: 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany, Neuroinformatics Group, Bielefield University (2007)
Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets no access. Neural Computation 22(9), 2229–2284 (2010)
Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational som. Neurocomputing (forthcoming, 2014)
Olteanu, M., Villa-Vialaneix, N., Cierco-Ayrolles, C.: Multiple kernel self-organizing maps. In: Verleysen, M. (ed.) XXIst European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 83–88. d-side publications (2013)
Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: Som_pak: The self-organizing map program package. Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science (1996)
Yan, J.: som: Self-Organizing Map. R package version 0.3-5 (2010)
Hamel, L., Ott, B., Breard, G.: popsom: Self-Organizing Maps With Population Based Convergence Criterion. R package version 2.3 (2013)
Wehrens, R., Buydens, L.: Self- and super-organising maps in r: the kohonen package. J. Stat. Softw. 21(5) (2007)
Rossi, F.: yasomi: Yet Another Self Organising Map Implementation. R package version 0.3/r39 (2012)
Ritter, H., Martinetz, T., Shulten, K.: Neural computation and Self-Organizing Maps, an Introduction. Addison-Wesley (1992)
Fort, J., Letremy, P., Cottrell, M.: Advantages and drawbacks of the batch kohonen algorithm. In: Verleysen, M. (ed.) Proceedings of 10th European Symposium on Artificial Neural Networks (ESANN 2002), Bruges, Belgium, pp. 223–230 (2002)
Cottrell, M., de Bodt, E.: A Kohonen map representations to avoid misleading interpretations. In: Verleysen, M. (ed.) Proceedings of ESANN 1996, D Facto, Bruxelles, pp. 103–110 (1996)
Ultsch, A., Siemon, H.: Kohonen’s self organizing feature maps for exploratory data analysis. In: Proceedings of International Neural Network Conference, INNC 1990 (1990)
Vesanto, J.: Data Exploration Process Based on the Self–Organizing Map. PhD thesis, Helsinki University of Technology, Espoo (Finland), Acta Polytechnica Scandinavica, Mathematics and Computing Series No.115 (2002)
Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralic, J., Polzlbauer, G., Rauber, A. (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA 2004), Sliezsky dom, Vysoke Tatry, Slovakia, pp. 67–82. Elfa Academic Press (2004)
RStudio, Inc.: shiny: Web Application Framework for R. R package version 0.6.0 (2013)
Becker, R., Chambers, J., Wilks, A.: The New S Language. Wadsworth & Brooks/Cole (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Boelaert, J., Bendhaiba, L., Olteanu, M., Villa-Vialaneix, N. (2014). SOMbrero: An R Package for Numeric and Non-numeric Self-Organizing Maps. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-07695-9_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07694-2
Online ISBN: 978-3-319-07695-9
eBook Packages: EngineeringEngineering (R0)