[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SOMbrero: An R Package for Numeric and Non-numeric Self-Organizing Maps

  • Conference paper
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

  • 1156 Accesses

Abstract

This paper presents SOMbrero, a new R package for self-organizing maps. Along with the standard SOM algorithm for numeric data, it implements self-organizing maps for contingency tables (“Korresp”) and for dissimilarity data (“relational SOM”), all relying on stochastic (i.e., on-line) training. It offers many graphical outputs and diagnostic tools, and comes with a user-friendly web graphical interface, based on the shiny R package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen, T.: Self-Organizing Maps, 3rd edn., vol. 30. Springer, Heidelberg (2001)

    Book  Google Scholar 

  2. Cottrell, M., Letremy, P., Roy, E.: Analyzing a contingency table with Kohonen maps: a factorial correspondence analysis. In: Mira, J., Cabestany, J., Prieto, A.G. (eds.) IWANN 1993. LNCS, vol. 686, pp. 305–311. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  3. Kohohen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21, 19–30 (1998)

    Article  Google Scholar 

  4. Mac Donald, D., Fyfe, C.: The kernel self organising map. In: Proceedings of 4th International Conference on Knowledge-Based Intelligence Engineering Systems and Applied Technologies, pp. 317–320 (2000)

    Google Scholar 

  5. Andras, P.: Kernel-Kohonen networks. International Journal of Neural Systems 12, 117–135 (2002)

    Article  Google Scholar 

  6. Villa, N., Rossi, F.: A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In: 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany, Neuroinformatics Group, Bielefield University (2007)

    Google Scholar 

  7. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets no access. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  Google Scholar 

  8. Olteanu, M., Villa-Vialaneix, N.: On-line relational and multiple relational som. Neurocomputing (forthcoming, 2014)

    Google Scholar 

  9. Olteanu, M., Villa-Vialaneix, N., Cierco-Ayrolles, C.: Multiple kernel self-organizing maps. In: Verleysen, M. (ed.) XXIst European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 83–88. d-side publications (2013)

    Google Scholar 

  10. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: Som_pak: The self-organizing map program package. Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science (1996)

    Google Scholar 

  11. Yan, J.: som: Self-Organizing Map. R package version 0.3-5 (2010)

    Google Scholar 

  12. Hamel, L., Ott, B., Breard, G.: popsom: Self-Organizing Maps With Population Based Convergence Criterion. R package version 2.3 (2013)

    Google Scholar 

  13. Wehrens, R., Buydens, L.: Self- and super-organising maps in r: the kohonen package. J. Stat. Softw. 21(5) (2007)

    Google Scholar 

  14. Rossi, F.: yasomi: Yet Another Self Organising Map Implementation. R package version 0.3/r39 (2012)

    Google Scholar 

  15. Ritter, H., Martinetz, T., Shulten, K.: Neural computation and Self-Organizing Maps, an Introduction. Addison-Wesley (1992)

    Google Scholar 

  16. Fort, J., Letremy, P., Cottrell, M.: Advantages and drawbacks of the batch kohonen algorithm. In: Verleysen, M. (ed.) Proceedings of 10th European Symposium on Artificial Neural Networks (ESANN 2002), Bruges, Belgium, pp. 223–230 (2002)

    Google Scholar 

  17. Cottrell, M., de Bodt, E.: A Kohonen map representations to avoid misleading interpretations. In: Verleysen, M. (ed.) Proceedings of ESANN 1996, D Facto, Bruxelles, pp. 103–110 (1996)

    Google Scholar 

  18. Ultsch, A., Siemon, H.: Kohonen’s self organizing feature maps for exploratory data analysis. In: Proceedings of International Neural Network Conference, INNC 1990 (1990)

    Google Scholar 

  19. Vesanto, J.: Data Exploration Process Based on the Self–Organizing Map. PhD thesis, Helsinki University of Technology, Espoo (Finland), Acta Polytechnica Scandinavica, Mathematics and Computing Series No.115 (2002)

    Google Scholar 

  20. Polzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralic, J., Polzlbauer, G., Rauber, A. (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA 2004), Sliezsky dom, Vysoke Tatry, Slovakia, pp. 67–82. Elfa Academic Press (2004)

    Google Scholar 

  21. RStudio, Inc.: shiny: Web Application Framework for R. R package version 0.6.0 (2013)

    Google Scholar 

  22. Becker, R., Chambers, J., Wilks, A.: The New S Language. Wadsworth & Brooks/Cole (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Boelaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boelaert, J., Bendhaiba, L., Olteanu, M., Villa-Vialaneix, N. (2014). SOMbrero: An R Package for Numeric and Non-numeric Self-Organizing Maps. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics