Abstract
The wide use of GPS sensors in smart phones encourages people to record their personal trajectories and share them with others in the Internet. A recommendation service is needed to help people process the large quantity of trajectories and select potentially interesting ones. The GPS trace data is a new format of information and few works focus on building user preference profiles on it. In this work we proposed a trajectory recommendation framework and developed three recommendation methods, namely, Activity-Based Recommendation (ABR), GPS-Based Recommendation (GBR) and Hybrid Recommendation. The ABR recommends trajectories purely relying on activity tags. For GBR, we proposed a generative model to construct user profiles based on GPS traces. The Hybrid recommendation combines the ABR and GBR. We finally conducted extensive experiments to evaluate these proposed solutions and it turned out the hybrid solution displays the best performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balabanovic, M., Shoham, Y.: Content-based collaborative recommendation. CACM 40(3), 66–72 (1997)
Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: ICDE (2011)
Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: An efficiency study. In: SIGMOD, pp. 255–266 (2010)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)
Dodge, S., Weibel, R., Forootan, E.: Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems 33(6), 419–434 (2009)
Dodge, S., Weibel, R., Laube, P.: Exploring movement-similarity analysis of moving objects. SIGSPATIAL Special 1, 11–16 (2009)
Ferman, A.M., Errico, J.H., van Beek, P., Sezan, M.I.: Content-based filtering and personalization using structured metadata. In: JCDL, p. 393 (2002)
Li, X., Hu, W., Hu, W.: A coarse-to-fine strategy for vehicle motion trajectory clustering. In: Pattern Recognition (2006)
Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: KDD, pp. 1099–1108 (2010)
Li, Z., Han, J., Ji, M., Tang, L.-A., Yu, Y., Ding, B., Lee, J.-G., Kays, R.: Movemine: Mining moving object data for discovery of animal movement patterns. TIST (2010)
Logan, B.: Mel frequency cepstral coefficients for music modeling. In: ISMIR (2000)
Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: AAAI/IAAI, pp. 187–192 (2002)
Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimedia Systems 12(3), 227–238 (2006)
Naftel, A., Khalid, S.: Motion trajectory learning in the dft-coefficient feature space. In: IEEE Conf. Comput. Vision Syst. (2006)
Pfeiffer, S., Vincent, T.: Formalisation of mpeg-1 compressed-domain audio features. Technical report, CSIRO mathematical and information, sciences, Australia (2001)
Reddy, S., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Determining transportation mode on mobile phones. In: ISWC (2008)
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6, 13:1–13:27 (2010)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)
Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Collaborative location and activity recommendations with gps history data. In: WWW, pp. 1029–1038 (2010)
Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.-Y.: Understanding transportation modes based on gps data for web applications. ACM Trans. Web 4, 1:1–1:36 (2010)
Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for geographic applications on the web. In: WWW, pp. 247–256 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yin, P., Ye, M., Lee, WC., Li, Z. (2014). Mining GPS Data for Trajectory Recommendation. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8444. Springer, Cham. https://doi.org/10.1007/978-3-319-06605-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-06605-9_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06604-2
Online ISBN: 978-3-319-06605-9
eBook Packages: Computer ScienceComputer Science (R0)