[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining GPS Data for Trajectory Recommendation

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8444))

Included in the following conference series:

  • 4376 Accesses

Abstract

The wide use of GPS sensors in smart phones encourages people to record their personal trajectories and share them with others in the Internet. A recommendation service is needed to help people process the large quantity of trajectories and select potentially interesting ones. The GPS trace data is a new format of information and few works focus on building user preference profiles on it. In this work we proposed a trajectory recommendation framework and developed three recommendation methods, namely, Activity-Based Recommendation (ABR), GPS-Based Recommendation (GBR) and Hybrid Recommendation. The ABR recommends trajectories purely relying on activity tags. For GBR, we proposed a generative model to construct user profiles based on GPS traces. The Hybrid recommendation combines the ABR and GBR. We finally conducted extensive experiments to evaluate these proposed solutions and it turned out the hybrid solution displays the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanovic, M., Shoham, Y.: Content-based collaborative recommendation. CACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  2. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: ICDE (2011)

    Google Scholar 

  4. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: An efficiency study. In: SIGMOD, pp. 255–266 (2010)

    Google Scholar 

  5. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Dodge, S., Weibel, R., Forootan, E.: Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems 33(6), 419–434 (2009)

    Article  Google Scholar 

  7. Dodge, S., Weibel, R., Laube, P.: Exploring movement-similarity analysis of moving objects. SIGSPATIAL Special 1, 11–16 (2009)

    Article  Google Scholar 

  8. Ferman, A.M., Errico, J.H., van Beek, P., Sezan, M.I.: Content-based filtering and personalization using structured metadata. In: JCDL, p. 393 (2002)

    Google Scholar 

  9. Li, X., Hu, W., Hu, W.: A coarse-to-fine strategy for vehicle motion trajectory clustering. In: Pattern Recognition (2006)

    Google Scholar 

  10. Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: KDD, pp. 1099–1108 (2010)

    Google Scholar 

  11. Li, Z., Han, J., Ji, M., Tang, L.-A., Yu, Y., Ding, B., Lee, J.-G., Kays, R.: Movemine: Mining moving object data for discovery of animal movement patterns. TIST (2010)

    Google Scholar 

  12. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: ISMIR (2000)

    Google Scholar 

  13. Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: AAAI/IAAI, pp. 187–192 (2002)

    Google Scholar 

  14. Naftel, A., Khalid, S.: Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimedia Systems 12(3), 227–238 (2006)

    Article  Google Scholar 

  15. Naftel, A., Khalid, S.: Motion trajectory learning in the dft-coefficient feature space. In: IEEE Conf. Comput. Vision Syst. (2006)

    Google Scholar 

  16. Pfeiffer, S., Vincent, T.: Formalisation of mpeg-1 compressed-domain audio features. Technical report, CSIRO mathematical and information, sciences, Australia (2001)

    Google Scholar 

  17. Reddy, S., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Determining transportation mode on mobile phones. In: ISWC (2008)

    Google Scholar 

  18. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6, 13:1–13:27 (2010)

    Google Scholar 

  19. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)

    Google Scholar 

  20. Zheng, V.W., Zheng, Y., Xie, X., Yang, Q.: Collaborative location and activity recommendations with gps history data. In: WWW, pp. 1029–1038 (2010)

    Google Scholar 

  21. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.-Y.: Understanding transportation modes based on gps data for web applications. ACM Trans. Web 4, 1:1–1:36 (2010)

    Google Scholar 

  22. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for geographic applications on the web. In: WWW, pp. 247–256 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yin, P., Ye, M., Lee, WC., Li, Z. (2014). Mining GPS Data for Trajectory Recommendation. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8444. Springer, Cham. https://doi.org/10.1007/978-3-319-06605-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06605-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06604-2

  • Online ISBN: 978-3-319-06605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics