[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Weka-SAT: A Hierarchical Context-Based Inference Engine to Enrich Trajectories with Semantics

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8436))

Included in the following conference series:

Abstract

A major challenge in trajectory data analysis is the definition of approaches to enrich it semantically. In this paper, we consider machine learning and context information to enrich trajectory data in three steps: (1) the definition of a context model for trajectory domain; (2) the generation of rules based on that context model; (3) the implementation of a classification algorithm that processes these rules and adds semantics to trajectories. This approach is hierarchical and combines clustering and classification tasks to identify important parts of trajectories and to annotate them with semantics. These ideas were integrated into Weka toolkit and experimented using fishing vessel’s trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spaccapietra, S., Parent, C., Damiani, M.L., de Macêdo, J.A.F., Porto, F., Vangenot, C.: A conceptual view on trajectories. DKE 65, 126–146 (2008)

    Article  Google Scholar 

  2. Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the 2008 ACM Symposium on AC, pp. 863–868. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Zimmermann, M., Kirste, T., Spiliopoulou, M.: Finding stops in error-prone trajectories of moving objects with time-based clustering. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009. CCIS, vol. 53, pp. 275–286. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Rocha, J.A.M.R.: Db-smot: Um método baseado na direćão para identificaćão de áreas de interesse em trajetórias. Master’s thesis, UFPE, Brasil (2010)

    Google Scholar 

  5. Alvares, L.O., Bogorny, V., Kuijpers, B., Macêdo, J.A.F., Moelans, B., Vaisman, A.A.: A model for enriching trajectories with semantic geographical information. In: GIS, pp. 22:1–22:8. ACM, New York (2007)

    Google Scholar 

  6. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semitri: a framework for semantic annotation of heterogeneous trajectories. In: 14th International Conference on EDT, pp. 259–270. ACM, New York (2011)

    Google Scholar 

  7. Spinsanti, L., Celli, F., Renso, C.: Where you stop is who you are: Understanding peoples activities. In: Proceedings of the 5th Workshop on BMI (2010)

    Google Scholar 

  8. Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B.: Weka - a machine learning workbench for data mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 1305–1314 (2005)

    Google Scholar 

  9. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  10. dos Santos, V.V., Brézillon, P., Salgado, A.C., Tedesco, P.: A context-oriented model for domain-independent context management. RIA 22(5), 609–628 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Moreno, B., Júnior, A.S., Times, V., Tedesco, P., Matwin, S. (2014). Weka-SAT: A Hierarchical Context-Based Inference Engine to Enrich Trajectories with Semantics. In: Sokolova, M., van Beek, P. (eds) Advances in Artificial Intelligence. Canadian AI 2014. Lecture Notes in Computer Science(), vol 8436. Springer, Cham. https://doi.org/10.1007/978-3-319-06483-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06483-3_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06482-6

  • Online ISBN: 978-3-319-06483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics