Abstract
A major challenge in trajectory data analysis is the definition of approaches to enrich it semantically. In this paper, we consider machine learning and context information to enrich trajectory data in three steps: (1) the definition of a context model for trajectory domain; (2) the generation of rules based on that context model; (3) the implementation of a classification algorithm that processes these rules and adds semantics to trajectories. This approach is hierarchical and combines clustering and classification tasks to identify important parts of trajectories and to annotate them with semantics. These ideas were integrated into Weka toolkit and experimented using fishing vessel’s trajectories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spaccapietra, S., Parent, C., Damiani, M.L., de Macêdo, J.A.F., Porto, F., Vangenot, C.: A conceptual view on trajectories. DKE 65, 126–146 (2008)
Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the 2008 ACM Symposium on AC, pp. 863–868. ACM, New York (2008)
Zimmermann, M., Kirste, T., Spiliopoulou, M.: Finding stops in error-prone trajectories of moving objects with time-based clustering. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds.) IMC 2009. CCIS, vol. 53, pp. 275–286. Springer, Heidelberg (2009)
Rocha, J.A.M.R.: Db-smot: Um método baseado na direćão para identificaćão de áreas de interesse em trajetórias. Master’s thesis, UFPE, Brasil (2010)
Alvares, L.O., Bogorny, V., Kuijpers, B., Macêdo, J.A.F., Moelans, B., Vaisman, A.A.: A model for enriching trajectories with semantic geographical information. In: GIS, pp. 22:1–22:8. ACM, New York (2007)
Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semitri: a framework for semantic annotation of heterogeneous trajectories. In: 14th International Conference on EDT, pp. 259–270. ACM, New York (2011)
Spinsanti, L., Celli, F., Renso, C.: Where you stop is who you are: Understanding peoples activities. In: Proceedings of the 5th Workshop on BMI (2010)
Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B.: Weka - a machine learning workbench for data mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 1305–1314 (2005)
Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)
dos Santos, V.V., Brézillon, P., Salgado, A.C., Tedesco, P.: A context-oriented model for domain-independent context management. RIA 22(5), 609–628 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Moreno, B., Júnior, A.S., Times, V., Tedesco, P., Matwin, S. (2014). Weka-SAT: A Hierarchical Context-Based Inference Engine to Enrich Trajectories with Semantics. In: Sokolova, M., van Beek, P. (eds) Advances in Artificial Intelligence. Canadian AI 2014. Lecture Notes in Computer Science(), vol 8436. Springer, Cham. https://doi.org/10.1007/978-3-319-06483-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-06483-3_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06482-6
Online ISBN: 978-3-319-06483-3
eBook Packages: Computer ScienceComputer Science (R0)