[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis

  • Conference paper
Relational and Algebraic Methods in Computer Science (RAMICS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8428))

Abstract

We present a multidimensional optimization problem that is formulated and solved in the tropical mathematics setting. The problem consists of minimizing a nonlinear objective function defined on vectors over an idempotent semifield by means of a conjugate transposition operator, subject to constraints in the form of linear vector inequalities. A complete direct solution to the problem under fairly general assumptions is given in a compact vector form suitable for both further analysis and practical implementation. We apply the result to solve a multidimensional minimax single facility location problem with Chebyshev distance and with inequality constraints imposed on the feasible location area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Hogben, L. (ed.) Handbook of Linear Algebra. Discrete Mathematics and its Applications, pp. 25-1–25-17. Taylor and Francis, Boca Raton (2007)

    Google Scholar 

  2. Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Statistics. Wiley, Chichester (1993)

    Google Scholar 

  3. Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. Springer, London (2010)

    Book  Google Scholar 

  4. Carré, B.A.: An algebra for network routing problems. IMA J. Appl. Math. 7, 273–294 (1971)

    Article  MATH  Google Scholar 

  5. Carré, B.: Graphs and Networks. Oxford Applied Mathematics and Computing Science Series. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  6. Cuninghame-Green, R.A.: Describing industrial processes with interference and approximating their steady-state behaviour. Oper. Res. Quart. 13, 95–100 (1962)

    Article  Google Scholar 

  7. Cuninghame-Green, R.A.: Minimax algebra and applications. Fuzzy Sets and Systems 41, 251–267 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cuninghame-Green, R.A.: Minimax algebra and applications. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 90, pp. 1–121. Academic Press, San Diego (1994)

    Google Scholar 

  9. Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  10. Drezner, Z.: Continuous Center Problems. In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis. International Series in Operations Research and Management Science, vol. 155, pp. 63–78. Springer, New York (2011)

    Chapter  Google Scholar 

  11. Elzinga, J., Hearn, D.W.: Geometrical solutions for some minimax location problems. Transport. Sci. 6, 379–394 (1972)

    Article  MathSciNet  Google Scholar 

  12. Giffler, B.: Scheduling general production systems using schedule algebra. Naval Res. Logist. Quart. 10, 237–255 (1963)

    Article  Google Scholar 

  13. Golan, J.S.: Semirings and Affine Equations Over Them: Theory and Applications. Mathematics and its Applications, vol. 556. Springer, New York (2003)

    Google Scholar 

  14. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms. Operations Research/Computer Science Interfaces, vol. 41. Springer, New York (2008)

    Google Scholar 

  15. Hansen, P., Peeters, D., Thisse, J.-F.: Location of public services: A selective method-oriented survey. Annals of Public and Cooperative Economics 51, 9–51 (1980)

    Article  Google Scholar 

  16. Hansen, P., Peeters, D., Thisse, J.-F.: Constrained location and the Weber-Rawls problem. In: Hansen, P. (ed.) Annals of Discrete Mathematics (11) Studies on Graphs and Discrete Programming. North-Holland Mathematics Studies, vol. 59, pp. 147–166. North-Holland (1981)

    Google Scholar 

  17. Heidergott, B., Olsder, G.J., van der Woude, J.: Max-plus at Work: Modeling and Analysis of Synchronized Systems. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2006)

    Google Scholar 

  18. Hudec, O., Zimmermann, K.: Biobjective center – balance graph location model. Optimization 45, 107–115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hudec, O., Zimmermann, K.: A service points location problem with Min-Max distance optimality criterion. Acta Univ. Carolin. Math. Phys. 34, 105–112 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications, Mathematics and its Applications, vol. 401. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  21. Krivulin, N.K.: Solution of generalized linear vector equations in idempotent algebra. Vestnik St. Petersburg Univ. Math. 39, 16–26 (2006)

    MathSciNet  Google Scholar 

  22. Krivulin, N.K.: Methods of Idempotent Algebra for Problems in Modeling and Analysis of Complex Systems. Saint Petersburg University Press, St. Petersburg (2009) (in Russian)

    Google Scholar 

  23. Krivulin, N.K.: On solution of a class of linear vector equations in idempotent algebra. Vestnik St. Petersburg University. Applied Mathematics, Informatics, Control Processes 10, 64–77 (2009) (in Russian)

    Google Scholar 

  24. Krivulin, N.: An algebraic approach to multidimensional minimax location problems with Chebyshev distance. WSEAS Trans. Math. 10, 191–200 (2011)

    Google Scholar 

  25. Krivulin, N.: A new algebraic solution to multidimensional minimax location problems with Chebyshev distance. WSEAS Trans. Math. 11, 605–614 (2012)

    Google Scholar 

  26. Krivulin, N.: A multidimensional tropical optimization problem with nonlinear objective function and linear constraints. Optimization (2013)

    Google Scholar 

  27. Krivulin, N., Zimmermann, K.: Direct solutions to tropical optimization problems with nonlinear objective functions and boundary constraints. In: Biolek, D., Walter, H., Utu, I., von Lucken, C. (eds.) Mathematical Methods and Optimization Techniques in Engineering, pp. 86–91. WSEAS Press (2013)

    Google Scholar 

  28. Krivulin, N.: A constrained tropical optimization problem: complete solution and application example. In: Litvinov, G.L., Sergeev, S.N. (eds.) Tropical and Idempotent Mathematics and Applications, Contemp. Math. American Mathematical Society, Providence (2014)

    Google Scholar 

  29. Moradi, E., Bidkhori, M.: Single facility location problem. In: Farahani, R.Z., Hekmatfar, M. (eds.) Facility Location, Contributions to Management Science, pp. 37–68. Physica (2009)

    Google Scholar 

  30. Pandit, S.N.N.: A new matrix calculus. J. SIAM 9, 632–639 (1961)

    MATH  MathSciNet  Google Scholar 

  31. Romanovskiĭ, I. V.: Asymptotic behavior of dynamic programming processes with a continuous set of states. Soviet Math. Dokl. 5, 1684–1687 (1964)

    Google Scholar 

  32. Sule, D.R.: Logistics of facility location and allocation. Marcel Dekker Ltd., New York (2001)

    Google Scholar 

  33. Tharwat, A., Zimmermann, K.: One class of separable optimization problems: Solution method, application. Optimization 59, 619–625 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vorob’ev, N.N.: The extremal matrix algebra. Soviet Math. Dokl. 4, 1220–1223 (1963)

    MATH  Google Scholar 

  35. Zimmermann, K.: Optimization problems with unimodal functions in max-separable constraints. Optimization 24, 31–41 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures. Annals of Discrete Mathematics, vol. 10. Elsevier, Amsterdam (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Krivulin, N. (2014). Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2014. Lecture Notes in Computer Science, vol 8428. Springer, Cham. https://doi.org/10.1007/978-3-319-06251-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06251-8_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06250-1

  • Online ISBN: 978-3-319-06251-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics