Abstract
A powerful aspect of diffusion MR imaging is the ability to reconstruct fiber orientations in brain white matter; however, the application of traditional learning algorithms is challenging due to the directional nature of the data. In this paper, we present an algorithmic approach to clustering such spatial and orientation data and apply it to brain white matter supervoxel segmentation. This approach is an extension of the DP-means algorithm to support axial data, and we present its theoretical connection to probabilistic models, including the Gaussian and Watson distributions. We evaluate our method with the analysis of synthetic data and an application to diffusion tensor atlas segmentation. We find our approach to be efficient and effective for the automatic extraction of regions of interest that respect the structure of brain white matter. The resulting supervoxel segmentation could be used to map regional anatomical changes in clinical studies or serve as a domain for more complex modeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azoury, K.S., Warmuth, M.K.: Relative loss bounds for on-line density estimation with the exponential family of distributions. Mach. Learn. 43(3), 211–246 (2001)
Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
Bloy, L., Ingalhalikar, M., Eavani, H., Schultz, R.T., Roberts, T.P., Verma, R.: White matter atlas generation using HARDI based automated parcellation. Neuroimage 59(4), 4055–4063 (2012)
Dhillon, I.S., Marcotte, E.M., Roshan, U.: Diametrical clustering for identifying anti-correlated gene clusters. Bioinformatics 19(13), 1612–1619 (2003)
Jiang, K., Kulis, B., Jordan, M.: Small-variance asymptotics for exponential family Dirichlet process mixture models. In: NIPS 2012 (2012)
Kaden, E., Kruggel, F.: Nonparametric Bayesian inference of the fiber orientation distribution from diffusion-weighted MR images. Med. Image Anal. 16(4), 876–888 (2012)
Kulis, B., Jordan, M.I.: Revisiting k-means: new algorithms via Bayesian nonparametrics. In: ICML-12, pp. 513–520 (2012)
Lucchi, A., Smith, K., Achanta, R., Lepetit, V., Fua, P.: A fully automated approach to segmentation of irregularly shaped cellular structures in EM images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 463–471. Springer, Heidelberg (2010)
Mori, G.: Guiding model search using segmentation. In: ICCV 2005, vol. 2, pp. 1417–1423 (2005)
Rathi, Y., Michailovich, O., Shenton, M.E., Bouix, S.: Directional functions for orientation distribution estimation. Med. Image Anal. 13(3), 432–444 (2009)
Schwartzman, A., Dougherty, R.F., Taylor, J.E.: Cross-subject comparison of principal diffusion direction maps. Magnet. Reson. Med. 53(6), 1423–1431 (2005)
Sra, S., Karp, D.: The multivariate Watson distribution: maximum-likelihood estimation and other aspects. J. Multivar. Anal. 114, 256–269 (2013)
Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)
Wachinger, C., Golland, P.: Spectral label fusion. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 410–417. Springer, Heidelberg (2012)
Watson, G.S.: Statistics on spheres, vol. 6. Wiley, New York (1983)
Wiegell, M.R., Tuch, D.S., Larsson, H.B., Wedeen, V.J.: Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neuroimage 19(2), 391–401 (2003)
Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12(2), 117–135 (2009)
Zhang, H., Yushkevich, P.A., Rueckert, D., Gee, J.C.: A computational white matter atlas for aging with surface-based representation of fasciculi. In: Fischer, B., Dawant, B., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 83–90. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cabeen, R.P., Laidlaw, D.H. (2014). White Matter Supervoxel Segmentation by Axial DP-Means Clustering. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds) Medical Computer Vision. Large Data in Medical Imaging. MCV 2013. Lecture Notes in Computer Science(), vol 8331. Springer, Cham. https://doi.org/10.1007/978-3-319-05530-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-05530-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05529-9
Online ISBN: 978-3-319-05530-5
eBook Packages: Computer ScienceComputer Science (R0)