[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reinforcement Learning Strategy for Solving the Resource-Constrained Project Scheduling Problem by a Team of A-Teams

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8398))

Included in the following conference series:

Abstract

In this paper the Team of A-Teams for solving the resource-constrained project scheduling problem (RCPSP) using the reinforcement learning interactive strategy is proposed. RCPSP belongs to the NP-hard problem class. To solve this problem a parallel cooperating A-Teams consisting of the asynchronous agents implemented using JABAT middleware have been proposed. Within each of the A-Team the interaction strategy using reinforcement learning is used. To evaluate the proposed approach computational experiment has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Colak, S., Erenguc, S.: A Neurogenetic Approach for the Resource–Constrained Project Scheduling Problem. Computers & Operations Research 38, 44–50 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: E-JABAT – An Implementation of the Web-Based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Intelligent Agents in the Evolution of Web and Applications. SCI, vol. 167, pp. 57–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Parallel Cooperating A-Teams. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS (LNAI), vol. 6923, pp. 322–331. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Barbucha, D.: Search Modes for the Cooperative Multi-agent System Solving the Vehicle Routing Problem, Intelligent and Autonomous Systems. Neurocomputing 88, 13–23 (2012)

    Article  Google Scholar 

  5. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 835–846 (1983)

    Google Scholar 

  6. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper, Exp. 3(3), 6–20 (2003)

    Google Scholar 

  7. Blazewicz, J., Lenstra, J., Rinnooy, A.: Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational Research 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  9. Busoniu, L., Babuska, R., De Schutter, B.: A Comprehensive Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 156–172 (2008)

    Google Scholar 

  10. Cohoon, J.P., Hegde, S.U., Martin, W.N., Richards, D.: Punctuated Equilibria: a Parallel Genetic Algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms, pp. 148–154. Lawrence Erlbaum Associates, Hillsdale (1987)

    Google Scholar 

  11. Hartmann, S., Kolisch, R.: Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An Update. European Journal of Operational Research 174, 23–37 (2006)

    Article  MATH  Google Scholar 

  12. Jędrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team Environment. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 719–726. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Jedrzejowicz, P., Ratajczak-Ropel, E.: New Generation A-Team for Solving the Resource Constrained Project Scheduling. In: Proc. the Eleventh International Workshop on Project Management and Scheduling, Istanbul, pp. 156–159 (2008)

    Google Scholar 

  14. Jedrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max Problem by the Team of Agents. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 734–743. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Jedrzejowicz, P., Ratajczak-Ropel, E.: Team of A-Teams for Solving the Resource-Constrained Project Scheduling Problem. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems, Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 1201–1210. IOS Press Ebooks (2012)

    Google Scholar 

  16. Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement Learning Strategy for A-Team Solving the Resource-Constrained Project Scheduling Problem. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 457–466. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  18. Kolisch, R.: Serial and parallel Resource-Constrained Project Scheduling Methods Revisited: Theory and Computation. European Journal of Operational Research 43, 23–40 (1996)

    MATH  Google Scholar 

  19. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Metaheuristics: Computer Decision-making, pp. 523–544. Kluwer Academic Publishers (2001)

    Google Scholar 

  20. PSPLIB, http://www.om-db.wi.tum.de/psplib/

  21. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Co-operation Schemes for Autonomous, Computer-Based Agents. Technical Report EDRC 18-59-96. Carnegie Mellon University, Pittsburgh (1996)

    Google Scholar 

  24. Tuyls, K., Weiss, G.: Multiagent learning: Basics, challenges, prospects. AI Magazine 33(3), 41–53 (2012)

    Google Scholar 

  25. Wauters, T.: Reinforcement learning enhanced heuristic search for combinatorial optimization. Doctoral thesis, Department of Computer Science, KU Leuven (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jędrzejowicz, P., Ratajczak-Ropel, E. (2014). Reinforcement Learning Strategy for Solving the Resource-Constrained Project Scheduling Problem by a Team of A-Teams. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds) Intelligent Information and Database Systems. ACIIDS 2014. Lecture Notes in Computer Science(), vol 8398. Springer, Cham. https://doi.org/10.1007/978-3-319-05458-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05458-2_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05457-5

  • Online ISBN: 978-3-319-05458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics