Abstract
In this paper the Team of A-Teams for solving the resource-constrained project scheduling problem (RCPSP) using the reinforcement learning interactive strategy is proposed. RCPSP belongs to the NP-hard problem class. To solve this problem a parallel cooperating A-Teams consisting of the asynchronous agents implemented using JABAT middleware have been proposed. Within each of the A-Team the interaction strategy using reinforcement learning is used. To evaluate the proposed approach computational experiment has been carried out.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, A., Colak, S., Erenguc, S.: A Neurogenetic Approach for the Resource–Constrained Project Scheduling Problem. Computers & Operations Research 38, 44–50 (2011)
Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: E-JABAT – An Implementation of the Web-Based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Intelligent Agents in the Evolution of Web and Applications. SCI, vol. 167, pp. 57–86. Springer, Heidelberg (2009)
Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: Parallel Cooperating A-Teams. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS (LNAI), vol. 6923, pp. 322–331. Springer, Heidelberg (2011)
Barbucha, D.: Search Modes for the Cooperative Multi-agent System Solving the Vehicle Routing Problem, Intelligent and Autonomous Systems. Neurocomputing 88, 13–23 (2012)
Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 835–846 (1983)
Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper, Exp. 3(3), 6–20 (2003)
Blazewicz, J., Lenstra, J., Rinnooy, A.: Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983)
Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational Research 112, 3–41 (1999)
Busoniu, L., Babuska, R., De Schutter, B.: A Comprehensive Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 156–172 (2008)
Cohoon, J.P., Hegde, S.U., Martin, W.N., Richards, D.: Punctuated Equilibria: a Parallel Genetic Algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms, pp. 148–154. Lawrence Erlbaum Associates, Hillsdale (1987)
Hartmann, S., Kolisch, R.: Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An Update. European Journal of Operational Research 174, 23–37 (2006)
Jędrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team Environment. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 719–726. Springer, Heidelberg (2006)
Jedrzejowicz, P., Ratajczak-Ropel, E.: New Generation A-Team for Solving the Resource Constrained Project Scheduling. In: Proc. the Eleventh International Workshop on Project Management and Scheduling, Istanbul, pp. 156–159 (2008)
Jedrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max Problem by the Team of Agents. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 734–743. Springer, Heidelberg (2009)
Jedrzejowicz, P., Ratajczak-Ropel, E.: Team of A-Teams for Solving the Resource-Constrained Project Scheduling Problem. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems, Frontiers in Artificial Intelligence and Applications, vol. 243, pp. 1201–1210. IOS Press Ebooks (2012)
Jędrzejowicz, P., Ratajczak-Ropel, E.: Reinforcement Learning Strategy for A-Team Solving the Resource-Constrained Project Scheduling Problem. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 457–466. Springer, Heidelberg (2013)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)
Kolisch, R.: Serial and parallel Resource-Constrained Project Scheduling Methods Revisited: Theory and Computation. European Journal of Operational Research 43, 23–40 (1996)
Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Metaheuristics: Computer Decision-making, pp. 523–544. Kluwer Academic Publishers (2001)
Schutt, A., Feydy, T., Stuckey, P.J.: Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Co-operation Schemes for Autonomous, Computer-Based Agents. Technical Report EDRC 18-59-96. Carnegie Mellon University, Pittsburgh (1996)
Tuyls, K., Weiss, G.: Multiagent learning: Basics, challenges, prospects. AI Magazine 33(3), 41–53 (2012)
Wauters, T.: Reinforcement learning enhanced heuristic search for combinatorial optimization. Doctoral thesis, Department of Computer Science, KU Leuven (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Jędrzejowicz, P., Ratajczak-Ropel, E. (2014). Reinforcement Learning Strategy for Solving the Resource-Constrained Project Scheduling Problem by a Team of A-Teams. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds) Intelligent Information and Database Systems. ACIIDS 2014. Lecture Notes in Computer Science(), vol 8398. Springer, Cham. https://doi.org/10.1007/978-3-319-05458-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-05458-2_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05457-5
Online ISBN: 978-3-319-05458-2
eBook Packages: Computer ScienceComputer Science (R0)