[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ad Text Optimization Using Interactive Evolutionary Computation Techniques

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

The description of a product or an ad’s text can be rewritten in many ways if other text fragments similar in meaning substitute different words or phrases. A good selection of words or phrases, composing an ad, is very important for the creation of an advertisement text, as the meaning of the text depends on this and it affects in a positive or a negative way the interest of the possible consumers towards the advertised product. In this chapter we present a method for the optimization of advertisement texts through the use of interactive evolutionary computing techniques. The EvoSpace platform is used to perform the evolution of a text, resulting in an optimized text, which should have a better impact on its readers in terms of persuasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McQuarrie, M., Edward, F., David, M.: Visual rhetoric in advertising: text-interpretive, experimental, and reader-response analyses. J. Consum. Res. 26(1), 37–54 (1999)

    Article  Google Scholar 

  2. De Jong, KA.: Evolutionary Computation: A Unified Approach. MIT Press (2006)

    Google Scholar 

  3. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp 2114–2119 (2009)

    Google Scholar 

  4. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, vol. 996. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  5. Sanchez, D., Melin, P.: Modular neural network with fuzzy integration and its optimization using genetic algorithms for human recognition based on iris, ear and voice biometrics. Studies in Computational Intelligence, vol 312, pp 85–102 (2010)

    Google Scholar 

  6. Sepulveda, R., Castillo, O., Melin, P., Montiel, O.: An efficient computational method to implement type-2 fuzzy logic in control applications. Adv. Soft Comput. 41, 45–52 (2007)

    Article  Google Scholar 

  7. Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 177(10), 2023–2048 (2007)

    Article  Google Scholar 

  8. Sepulveda, R., Montiel, O., Lizarraga, G., Castillo, O.: Modeling and simulation of the defuzzification stage of a type-2 fuzzy controller using the Xilinx system generator and Simulink. Stud. Comput. Intell. 257, 309–325 (2009)

    Article  Google Scholar 

  9. Sepulveda, R., Montiel, O., Castillo, O., Melin, P.: Optimizing the MFs in type-2 fuzzy logic controllers, using the human evolutionary model. Int. Rev. Autom. Control 3(1), 1–10 (2011)

    Google Scholar 

  10. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275 (2001)

    Article  Google Scholar 

  11. Whitley, D.: A genetic Algorithm Tutorial. Statistics and Computing. Kluwer Academic Publishers, vol. 4.2, p. 65 (1994)

    Google Scholar 

  12. Malcolm, J.A., Peter, L.: An approach to detecting article spinning. Proceedings of the 3rd International Conference on Plagiarism (2008)

    Google Scholar 

  13. García, M., et al.: EvoSpace: a distributed evolutionary platform based on the tuple space model. In: Applications of Evolutionary Computation. Springer, Berlin Heidelberg, pp. 499–508 (2013)

    Google Scholar 

  14. Choi, S., Nora, J.: Antecedents and consequences of web advertising credibility: a study of consumer response to banner ads. J. Interact. Advertising 3(1), 12–24 (2002)

    Article  Google Scholar 

  15. Davis, H.: Google advertising tools: cashing in with AdSense, AdWords, and the Google APIs. O’reilly (2006)

    Google Scholar 

  16. García, M., et al.: EvoSpace-i: a framework for interactive evolutionary algorithms. In: Proceeding of the 15th Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion. ACM, pp. 1301–1308 (2013)

    Google Scholar 

  17. Fernández, F., et al.: EvoSpace-interactivo: una herramienta para el arte y diseño Interactivo y colaborativo. IX Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, pp. 220–228 (2013)

    Google Scholar 

  18. Chevrolet. Chevrolet Mexico Ad description [online]. Website: http://www.chevrolet.com.mx/spark-2014.html. 12 Dec 2013

  19. Hartigan, J.: Clustering Algorithms. Wiley (1975)

    Google Scholar 

  20. Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using Fuzzy Logic. MICAI (2), 374–385 (2012)

    Google Scholar 

  21. Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing unit for minimization of complex mathematical functions. In: Recent Advances on Hybrid Intelligent Systems, pp. 313–322 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Mancilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Madera, Q., García-Valdez, M., Mancilla, A. (2014). Ad Text Optimization Using Interactive Evolutionary Computation Techniques. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics