[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identification of Epilepsy Seizures Using Multi-resolution Analysis and Artificial Neural Networks

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Abstract

Finding efficient and effective automatic methods for the identification and prediction of epileptic seizures is highly desired, due to the relevance of this brain disorder. Despite the large amount of research going on in identification and prediction solutions, still it is required to find confident methods suitable to be used in real applications. In this paper, we discuss the principal challenges found in epilepsy identification, when it is carried on offline analyzing electro-encephalograms (EEG) recordings. Indeed, we present the results obtained so far in our research group, with a system based on multi-resolution analysis and feed-forward neural networks, which focus on tackling three important challenges found in this type of problems: noise reduction, feature extraction and pertinence of the classifier. A 3-fold validation of our strategy reported an accuracy of 99.26 ± 0.26 %, a sensitive of 98.93 % and a specificity of 99.59 %, using data provided by the University of Bonn. Several combinations of filters and wavelet transforms were tested, found that the best results occurs when a Chebyshev II filter was used to eliminate noise, 5 characteristics were obtained using a Discrete Wavelet Transform (DWT) with a Haar wavelet and a feed-forward neural network with 18 hidden nodes was used for classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addison, P.S.: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering Medicine and Finance. IOP Publishing, England (2002)

    Book  Google Scholar 

  2. Andrzejak, R.G., Lehnertz, K., Mormann F., Rieke D., David P., Elger, C.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E. 64(6), 061907-1, 061907-8 (2001). doi:10.1103/PhysRevE.64.061907

    Google Scholar 

  3. Anusha, K.S., Mathew, T.M., Subha, D.P.: Classification of normal and epileptic EEG signal using time & frequency domain features through artificial neural network. In: International Conference on Advances in Computing and Communications. IEEE (2012)

    Google Scholar 

  4. Bashashati, M., Fatourechi, R., Ward, K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32–R57 (2007)

    Article  Google Scholar 

  5. Berger, H.: Über das elektrenkephalogramm des menschen. Arch. F. Psichiat. 87, 527–570 (1929)

    Article  Google Scholar 

  6. Cetin, E., Gerek, O.N., Yardimci, Y.: Equiripple FIR filter design by the FFT algorithm. IEEE Signal Process. Mag. 14, 60–64 (1997)

    Google Scholar 

  7. Durka, P.: Matching Pursuit and Unification in EEG Analysis. Artech House Norwood, Boston (2007)

    Google Scholar 

  8. EU FTP 7. ICT -2007 5. Epilepsy and seizures. EPILEPSIAE project (Online).: Advanced ICT for risk assessment and patient safety grant 211713. Available: http://www.epilepsiae.eu/about_project/epilepsy_and_seizures/, (2013). Accessed in 27 Nov 2013 (2913)

  9. García-González, Y.: Modelos y algoritmos para redes Neuronales recurrentes basadas en wavelets aplicados a la detección de intrusos. Master thesis, Department of Computing, Electronics and Mechatronics, Universidad de las Américas, Puebla (2011)

    Google Scholar 

  10. Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54(9), 1545–1551 (2007)

    Article  Google Scholar 

  11. Gómez-Gil, P.: Tutorial: an introduction to the use of artificial neural networks. Available at: http://ccc.inaoep.mx/~pgomez/tutorials/ATutorialOnANN2012.zip

  12. Gómez-Gil, P., Ramírez-Cortés, J.M., Pomares Hernández, S.E., Alarcón-Aquino, V.: A neural network scheme for long-term forecasting of chaotic time series. Neural Process. Lett. 33(3), 215–233 (2011)

    Article  Google Scholar 

  13. Güler, N.F., Übeylib, E.D., Güler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29, 506–514 (2005)

    Article  Google Scholar 

  14. Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. P Roy Soc Lond a Mat 1998(454), 903–995 (1971)

    Google Scholar 

  15. Husain, S.J., Rao, K.S.: Epileptic seizures classification from EEG signals using neural networks. In: International Conference on Information and Network Technology, (37) (2012)

    Google Scholar 

  16. Ihle, M., Feldwisch-Drentrupa, H., Teixeirae, C., Witonf, A., Schelter, B., Timmerb, J., Schulze-Bonhagea, A.: EPILEPSIAE—a European epilepsy database. Comput. Methods Programs Biomed. 106, 127–138 (2012)

    Article  Google Scholar 

  17. Juárez-Guerra, E., Gómez-Gil, P., Alarcon-Aquino, V.: Biomedical signal processing using wavelet-based neural networks. In: Special Issue: Advances in Pattern Recognition, Research in Computing Science, vol. 61, pp. 23–32 (2013a)

    Google Scholar 

  18. Juárez-Guerra, E., Alarcón-Aquino, V., Gómez-Gil P.: Epilepsy seizure detection in eeg signals using wavelet transforms and neural networks. To be published in: Proceedings of the Virtual International Joint Conference on Computer, Information and Systems Sciences and Engineering (CISSE 2013), 12–14 Dec 2013 (2013b)

    Google Scholar 

  19. Kaur, S.: Detection of epilepsy disorder by EEG using discrete wavelet transforms. Thesis in Master of Engineering in Electronic Instrumentation and Control, Thapar University, July 2012

    Google Scholar 

  20. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd (1995)

    Google Scholar 

  21. Mandic, D., Rehman, N., Wu, Z., Huang, N.: Empirical mode decomposition-based time-frequency analysis of multivariate signals. IEEE Signal Process. Mag. 30(6), 74–86 (2013)

    Article  Google Scholar 

  22. Martis, J.R., Acharya, U.R., Tan, J.H., Petznick, A., Yanti, R., Chua, C.K., Ng, E.K.Y., Tong, L.: Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. Int. J. Neural Syst. 22(6), 1250027-1, 16 (2012)

    Google Scholar 

  23. Martosini, A.N.: Animal electricity, CA 2+ and muscle contraction. A brief history of muscle research. Acta Biochim. Pol. 47(3), 493–516 (2000)

    Google Scholar 

  24. MathWorks Incorporation: Documentation, Signal Processing Toolbox, Analog and Digital Filters. Matlab R2013b (2013)

    Google Scholar 

  25. Mirzaei, A., Ayatollahi, A., Vavadi, H.: Statistical analysis of epileptic activities based on histogram and wavelet-spectral entropy. J. Biomed. Sci. Eng. 4, 207–213 (2011)

    Article  Google Scholar 

  26. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch II, D.: Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30, 201–218 (2000)

    Article  Google Scholar 

  27. Proakis, J.G., Manolakis, D.G.: Digital signal processing. Principles, algorithms and applications, 3rd edn. Englewood Prentice Hall, Cliffs (1996)

    Google Scholar 

  28. Ravish, D.K., Devi, S.S.: Automated seizure detection and spectral analysis of EEG seizure time series. Eur. J. Sci. Res. 68(1), 72–82 (2012)

    Google Scholar 

  29. Subasi, A., Ercelebi, E.: Classification of EEG signals using neural network and logistic regression. J Comput. Methods Programs Biomed. 78, 87–99 (2005)

    Article  Google Scholar 

  30. Sung, J.Y., Jin, B.P., Yoon, H.C.: Direct adaptive control using self recurrent wavelet neural network via adaptive learning rates for stable path tracking of mobile robots. In: Proceedings of the 2005 American Control Conference, pp. 288–293. Portland (2005)

    Google Scholar 

  31. Sunhaya, S., Manimegalai, P.: Detection of epilepsy disorder in EEG signal. Int. J. Emerg Dev. 2(2), 473–479 (2012)

    Google Scholar 

  32. Tzallas, A.T., Tsipouras, M.T., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5), 703–710 (2009)

    Article  Google Scholar 

  33. Universitat Bonn, Kinik für Epiteptologie: EEG time series download page. URL: http://epileptologie-bonn.de/cms/front_content.php?idcat=193, Last Accessed at 12 Dec 2013

  34. Wacker, M., Witte, H.: Time-frequency techniques in biomedical signal analysis: a tutorial review of similarities and differences. Methods Inf. Med. 52(4), 297–307 (2013)

    Google Scholar 

  35. Wang, Y. et al.: Comparison of ictal and interictal EEG signals using fractal features. Int. J. Neural Syst. 23(6), 1350028 (11 pages) (2013)

    Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the financial support from the “Universidad Autónoma de Tlaxcala” and PROMEP by scholarship No. UATLX-244. This research has been partially supported by CONACYT, project grant No. CB-2010-155250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Gómez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gómez-Gil, P., Juárez-Guerra, E., Alarcón-Aquino, V., Ramírez-Cortés, M., Rangel-Magdaleno, J. (2014). Identification of Epilepsy Seizures Using Multi-resolution Analysis and Artificial Neural Networks. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics