[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Weight-Reducing Hennie Machines and Their Descriptional Complexity

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

We present a constructive variant of the Hennie machine. It is demonstrated how it can facilitate the design of finite-state machines. We focus on the deterministic version of the model and study its descriptional complexity. The model’s succinctness is compared with common devices that include the nondeterministic finite automaton, two-way finite automaton and pebble automaton.

The author was supported by the Grant Agency of the Czech Republic under the project P103/10/0783.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birget, J.C.: State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory 26(3), 237–269 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Durak, B.: Two-way finite automata with a write-once track. J. Autom. Lang. Comb. 12(1), 97–115 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Globerman, N., Harel, D.: Complexity results for two-way and multi-pebble automata and their logics. Theoretical Computer Science 169, 161–184 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Hartmanis, J.: Computational complexity of one-tape Turing machine computations. J. ACM 15(2), 325–339 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hennie, F.: One-tape, off-line Turing machine computations. Information and Control 8(6), 553–578 (1965)

    Article  MathSciNet  Google Scholar 

  7. Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

    Google Scholar 

  9. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  10. Průša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Radó, T.: On non-computable functions. Bell System Technical Journal 41(3), 877–884 (1962)

    Article  MathSciNet  Google Scholar 

  12. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–17 (2008)

    Article  MathSciNet  Google Scholar 

  13. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, New York, NY, USA, pp. 275–286 (1978)

    Google Scholar 

  14. Shannon, C.E.: A universal Turing machine with two internal states. Annals of Mathematics Studies 34, 157–165 (1956)

    MathSciNet  Google Scholar 

  15. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Průša, D. (2014). Weight-Reducing Hennie Machines and Their Descriptional Complexity. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics