[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algebraic Tools for the Overlapping Tile Product

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

  • 1096 Accesses

Abstract

Overlapping tile automata and the associated notion of recognizability by means of (adequate) premorphisms in finite ordered monoids have recently been defined for coping with the collapse of classical recognizability in inverse monoids. In this paper, we investigate more in depth the associated algebraic tools that allow for a better understanding of the underlying mathematical theory. In particular, addressing the surprisingly difficult problem of language product, we eventually found some deep links with classical notions of inverse semigroup theory such as the notion of restricted product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial actions. Journal of Pure and Applied Algebra 216, 935–949 (2012)

    Article  MATH  Google Scholar 

  2. Dicky, A., Janin, D.: Embedding finite and infinite words into overlapping tiles. Tech. Rep. RR-1475-13, LaBRI, Université de Bordeaux, Bordeaux (2013)

    Google Scholar 

  3. Dicky, A., Janin, D.: Modélisation algébrique du diner des philosophes. Modélisation des Systèmes Réactifs (MSR). Journal Européen des Systèmes Automatisés (JESA) 47(1-2-3/2013) (November 2013)

    Google Scholar 

  4. Fountain, J.: Right PP monoids with central idempotents. Semigroup Forum 13, 229–237 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fountain, J., Gomes, G., Gould, V.: The free ample monoid. Int. Jour. of Algebra and Computation 19, 527–554 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hollings, C.D.: From right PP monoids to restriction semigroups: a survey. European Journal of Pure and Applied Mathematics 2(1), 21–57 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Hollings, C.D.: The Ehresmann-Schein-Nambooripad Theorem and its successors. European Journal of Pure and Applied Mathematics 5(4), 414–450 (2012)

    MathSciNet  Google Scholar 

  8. Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional overlapping tiles. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 516–528. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Janin, D.: Algebras, automata and logic for languages of labeled birooted trees. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 312–323. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Janin, D.: On languages of one-dimensional overlapping tiles. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 244–256. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Janin, D.: Overlapping tile automata. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 431–443. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Janin, D., Berthaut, F., DeSainte-Catherine, M., Orlarey, Y., Salvati, S.: The T-calculus : towards a structured programming of (musical) time and space. In: Workshop on Functional Art, Music, Modeling and Design (FARM). ACM Press (2013)

    Google Scholar 

  13. Janin, D., Berthaut, F., DeSainteCatherine, M.: Multi-scale design of interactive music systems: the libTuiles experiment. In: Sound and Music Computing (SMC) (2013)

    Google Scholar 

  14. Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Comm. Math. Phys. 187, 115–157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kellendonk, J., Lawson, M.V.: Tiling semigroups. Journal of Algebra 224(1), 140–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lawson, M.V.: Semigroups and ordered categories. I. the reduced case. Journal of Algebra 141(2), 422–462 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lawson, M.V.: Inverse Semigroups: The theory of partial symmetries. World Scientific (1998)

    Google Scholar 

  18. Lawson, M.V.: McAlister semigroups. Journal of Algebra 202(1), 276–294 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Margolis, S.W., Meakin, J.C.: Inverse monoids, trees and context-free languages. Trans. Amer. Math. Soc. 335, 259–276 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Munn, W.D.: Free inverse semigroups. Proceeedings of the London Mathematical Society 29(3), 385–404 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pietrich, M.: Inverse semigroups. Wiley (1984)

    Google Scholar 

  22. Pin, J.E.: Algebraic tools for the concatenation product. Theoretical Comp. Science 292(1), 317–342 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Scheiblich, H.E.: Free inverse semigroups. Semigroup Forum 4, 351–359 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Silva, P.V.: On free inverse monoid languages. ITA 30(4), 349–378 (1996)

    MATH  Google Scholar 

  25. Thomas, W.: Handbook of Formal Languages. In: Languages, Automata, and Logic, ch. 7, vol. III, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dubourg, E., Janin, D. (2014). Algebraic Tools for the Overlapping Tile Product. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics