[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Parikh Membership Problem for FAs, PDAs, and CMs

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

We consider the problem of determining if a string w belongs to a language L specified by an automaton (NFA, or PDA augmented by reversal-bounded counters, etc.) where the string w is specified by its Parikh vector. If the automaton (PDA augmented with reversal-bounded counters) is fixed and the Parikh vector is encoded in unary (binary), the problem is in DLOGSPACE (PTIME). When the automaton is part of the input and the Parikh vector is encoded in binary, we show the following results: if the input is an NFA accepting a letter-bounded language (i.e., \(\subseteq a_1^* \cdots a_k^*\) for some distinct symbols a 1, ..., a k ), the problem is in PTIME, but if the input is an NFA accepting a word-bounded language (i.e., \(\subseteq w_1^* \cdots w_m^*\) for some nonnull strings w 1, ..., w m ), it is NP-complete. The proofs involve solving systems of linear Diophantine equations with non-negative integer coefficients. As an application of the results, we present efficient algorithms for a generalization of a tiling problem posed recently by Dana Scott. Finally, we give a classification of the complexity of the membership problem for restricted classes of semilinear sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8(3), 315–332 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Esparza, J.: Petri nets, commutative context-free grammars and basic parallel processes. Fundamenta Informaticae 30, 23–41 (1997)

    MathSciNet  Google Scholar 

  3. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  4. Golomb, S.W.: Polyominoes, 2nd edn. Princeton University Press (1994) ISBN 0-691-02444-8

    Google Scholar 

  5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata, Languages and Computation. Addison-Wesley (1978)

    Google Scholar 

  6. Hyunh, T.-D.: The Complexity of semilinear sets. Elektr. Inform.-verarbeitung and Kybern. 6, 291–338 (1982)

    Google Scholar 

  7. Hyunh, T.-D.: Commutative Grammars: The Complexity of Uniform Word Problems. Information and Control 57, 21–39 (1983)

    Article  MathSciNet  Google Scholar 

  8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. Assoc. Comput. Mach. 25, 116–133 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ibarra, O.H., Ravikumar, B.: On sparseness and ambiguity for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)

    Google Scholar 

  10. Ibarra, O.H., Ravikumar, B.: On bounded languages and reversal-bounded automata. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 359–370. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. IJFCS 23, 1291–1306 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Ibarra, O.H., Yen, H.: On the Containment and Equivalence Problems for Two-way Transducers. Theoretical Computer Science 429, 155–163 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kopczynski, E., To, A.W.: Parikh Images of Grammars: Complexity and Applications. In: Proc. of 25th Annual IEEE Logic in Computer Science, pp. 80–89 (2010)

    Google Scholar 

  14. Lavado, G.J., Pighizzini, G., Seki, S.: Converting Nondeterministic Automata and Context-Free Grammars into Parikh Equivalent Deterministic Automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 284–295. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press (2001)

    Google Scholar 

  16. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 583–548 (1983)

    Google Scholar 

  17. Lueker, G.S.: Two NP-Complete Problems in Nonnegative Integer Programming. Report No. 178, Computer Science Laboratory, Princeton University (1975)

    Google Scholar 

  18. Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  19. Scott, D.S.: Programming a combinatorial puzzle. Technical Report No. 1, Department of Electrical Engineering. Princeton University (1958)

    Google Scholar 

  20. To, A.W.: Parikh Images of Regular Languages: Complexity and Applications (2010) (unpublished manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ibarra, O.H., Ravikumar, B. (2014). On the Parikh Membership Problem for FAs, PDAs, and CMs. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics