[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

I/O Efficient Algorithms for the Minimum Cut Problem on Unweighted Undirected Graphs

  • Conference paper
Algorithms and Computation (WALCOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8344))

Included in the following conference series:

  • 1084 Accesses

Abstract

The problem of finding the minimum cut of an undirected unweighted graph is studied on the external memory model. First, a lower bound of Ω((E/V) Sort(V)) on the number of I/Os is shown for the problem, where V is the number of vertices and E is the number of edges. Then the following are presented, for M = Ω(B 2), (1) a minimum cut algorithm that uses \(O(c \log E ({\rm MSF}{(V,E)} + \frac{V}{B} {\rm Sort}({V})))\) I/Os; here MSF(V,E) is the number of I/Os needed to compute a minimum spanning tree of the graph, and c is the value of the minimum cut. The algorithm performs better on dense graphs than the algorithm of [7], which requires O(E + c 2 V log(V/c)) I/Os, when executed on the external memory model. For a δ-fat graph (for δ > 0, the maximum tree packing of the graph is at least (1 + δ)c/2), our algorithm computes a minimum cut in O(c logE (MSF(V,E) + Sort(E))) I/Os. (2) a randomized algorithm that computes minimum cut with high probability in \(O(c \log E \cdot{\rm MSF}{(V,E)} + {\rm Sort}{(E)} \log^2 V + \frac{V}{B} {\rm Sort}{(V)} \log V)\) I/Os. (3) a (2 + ε)-minimum cut algorithm that requires O((E/V) MSF(V,E)) I/Os and performs better on sparse graphs than our exact minimum cut algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31(9), 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  2. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with a sorting primitive. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 540–549 (2004)

    Google Scholar 

  3. Alka: Efficient algorithms and data structures for massive data sets, Ph.D. thesis, Indian Institute of Technology Guwahati, India (2009), http://arxiv.org/abs/1005.3473

  4. Brinkmeier, M.: A simple and fast min-cut algorithm. Theor. Comp. Sys. 41(2), 369–380 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External memory graph algorithms. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 139–149 (1995)

    Google Scholar 

  6. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci. 50(2), 259–273 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldschlager, L.M., Shaw, R.A., Staples, J.: The maximum flow problem is LOGSPACE complete for P. Theoret. Comput. Sci. 21(1), 105–111 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hao, J., Orlin, J.: A faster algorithm for finding the minimum cut in a graph. J. Algorithms 17(3), 424–446 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karger, D.R.: Minimum cuts in near linear time. J. ACM 47(1), 46–76 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karger, D.R., Motwani, R.: An NC algorithm for minimum cuts. SIAM J. Comput. 26(1), 255–272 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Matula, D.W.: A linear time 2 + ε approximation algorithm for edge connectivity. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 500–504 (1993)

    Google Scholar 

  13. Mungala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 687–694 (1999)

    Google Scholar 

  14. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7(5-6), 583–596 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nash-Williams, C.S.J.A.: Edge-disjoint spanning tree of finite graphs. J. London Math. Soc. 36, 445–450 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  16. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Math. Oper. Res. 20(2), 257–301 (1995)

    Google Scholar 

  17. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thorup, M., Karger, D.R.: Dynamic graph algorithms with applications. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 1–9. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhushan, A., Sajith, G. (2014). I/O Efficient Algorithms for the Minimum Cut Problem on Unweighted Undirected Graphs. In: Pal, S.P., Sadakane, K. (eds) Algorithms and Computation. WALCOM 2014. Lecture Notes in Computer Science, vol 8344. Springer, Cham. https://doi.org/10.1007/978-3-319-04657-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04657-0_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04656-3

  • Online ISBN: 978-3-319-04657-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics