[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cortical muscle coupling in Parkinson’s disease (PD) bradykinesia

  • Conference paper
Parkinson’s Disease and Related Disorders

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 70))

Summary

Objectives: To determine if novel methods establishing patterns in EEG-EMG coupling can infer subcortical influences on the motor cortex, and the relationship between these subcortical rhythms and bradykinesia. Background: Previous work has suggested that bradykinesia may be a result of inappropriate oscillatory drive to the muscles. Typically, the signal processing method of coherence is used to infer coupling between a single channel of EEG and a single channel of rectified EMG, which demonstrates 2 peaks during sustained contraction: one, ∼10 Hz, which is pathologically increased in PD, and a ∼30 Hz peak which is decreased in PD, and influenced by pharmacological manipulation of GABAA receptors in normal subjects. Materials and methods: We employed a novel multiperiodic squeezing paradigm which also required simultaneous movements. Seven PD subjects (on and off L-Dopa) and five normal subjects were recruited. Extent of bradykinesia was inferred by reduced relative performance of the higher frequencies of the squeezing paradigm and UPDRS scores. We employed Independent Component Analysis (ICA) and Empirical Mode Decomposition (EMD) to determine EEG/EMG coupling. Results: Corticomuscular coupling was detected during the continually changing force levels. Different components included those over the primary motor cortex (ipsilaterally and contralaterally) and over the midline. Subjects with greater bradykinesia had a tendency towards increased ∼10 Hz coupling and reduced ∼30 Hz coupling that was erratically reversed with L-dopa. Conclusions: These results suggest that lower ∼10 Hz peak may represent pathological oscillations within the basal ganglia which may be a contributing factor to bradykinesia in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baker MR, Baker SN (2003) The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol 546 (Pt 3): 931–942

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Pinches EM, et al. (2003) Synchronization in monkey motor cortex during a precision grip task. II. Effect of oscillatory activity on corticospinal output. J Neurophysiol 89(4): 1941–1953

    Article  PubMed  Google Scholar 

  • Baker SN, Spinks R, et al. (2001) Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. J Neurophysiol 85(2): 869–885

    PubMed  CAS  Google Scholar 

  • Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11(6): 689–695

    Article  PubMed  CAS  Google Scholar 

  • Bar-Gad I, Havazelet-Heimer G, et al. (2000) Reinforcement-driven dimensionality reduction — a model for information processing in the basal ganglia. J Basic Clin Physiol Pharmacol 11(4): 305–320

    PubMed  CAS  Google Scholar 

  • Bar-Gad I, Heimer G, et al. (2003) Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent. J Neurosci 23(10): 4012–4016

    PubMed  CAS  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6): 1129–1159

    PubMed  CAS  Google Scholar 

  • Bressler SL, Coppola R, et al. (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366(6451): 153–156

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Marsden J, et al. (2001) Intermuscular coherence in Parkinson’s disease: relationship to bradykinesia. Neuroreport 12(11): 2577–2581

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Salenius S, et al. (1998) Cortical correlate of the Piper rhythm in humans. J Neurophysiol 80(6): 2911–2917

    PubMed  CAS  Google Scholar 

  • Classen J, Gerloff C, et al. (1998) Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79(3): 1567–1573

    PubMed  CAS  Google Scholar 

  • Farina D, Merletti R, et al. (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96(4): 1486–1495

    Article  PubMed  Google Scholar 

  • Farmer SF (1998) Rhythmicity, synchronization and binding in human and primate motor systems. J Physiol 509 (Pt 1): 3–14

    Article  PubMed  CAS  Google Scholar 

  • Feige B, Aertsen A, et al. (2000) Dynamic synchronization between multiple cortical motor areas and muscle activity in phasic voluntary movements. J Neurophysiol 84(5): 2622–2629

    PubMed  CAS  Google Scholar 

  • Fisher RJ, Galea MP, et al. (2002) Digital nerve anaesthesia decreases EMG-EMG coherence in a human precision grip task. Exp Brain Res 145(2): 207–214

    Article  PubMed  CAS  Google Scholar 

  • Foldiak P (1990) Forming sparse representations by local anti-Hebbian learning. Biol Cybern 64(2): 165–170

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Timmermann L, et al. (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA 99(4): 2299–2302

    Article  PubMed  CAS  Google Scholar 

  • Grosse P, Cassidy MJ, et al. (2002) EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol 113(10): 1523–1531

    Article  PubMed  CAS  Google Scholar 

  • Grosse P, Guerrini R, et al. (2003) Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain 126 (Pt 2): 326–342

    Article  PubMed  CAS  Google Scholar 

  • Heimer G, Bar-Gad I, et al. (2002) Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J Neurosci 22(18): 7850–7855

    PubMed  CAS  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5): 427–442

    Article  PubMed  CAS  Google Scholar 

  • Huang NE, Shen Z, et al. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc Roy Soc Lond A454: 903–995

    Google Scholar 

  • Jackson A, Spinks RL, et al. (2002) Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation. J Physiol 541 (Pt 3): 685–699

    Article  PubMed  CAS  Google Scholar 

  • Jung TP, Makeig S, et al. (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2): 163–178

    Article  PubMed  CAS  Google Scholar 

  • Kilner J, Baker S, et al. (1999) Task-dependent modulation of 15-30Hz coherence between rectified EMGs from human hand and forearm muscles. J Physiol (Lond) 516: 559–570

    Article  CAS  Google Scholar 

  • Kilner JM, Alonso-Alonso M, et al. (2002) Modulation of synchrony between single motor units during precision grip tasks in humans. J Physiol 541 (Pt 3): 937–948

    Article  PubMed  CAS  Google Scholar 

  • Kilner JM, Baker SN, et al. (2000) Human cortical muscle coherence is directly related to specific motor parameters. J Neurosci 20(23): 8838–8845

    PubMed  CAS  Google Scholar 

  • Kilner JM, Baker SN, et al. (1999) Task-dependent modulation of 15-30Hz coherence between rectified EMGs from human hand and forearm muscles. J Physiol 516 (Pt 2): 559–570

    Article  PubMed  CAS  Google Scholar 

  • Kristeva-Feige R, Fritsch C, et al. (2002) Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113(1): 124–131

    Article  PubMed  Google Scholar 

  • Kus R, Kaminski M, et al. (2004) Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE Transact Biomed Eng 51: 1501

    Article  Google Scholar 

  • Lachaux JP, Lutz A, et al. (2002) Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin 32(3): 157–174

    Article  PubMed  Google Scholar 

  • Liao R, Krolik J, et al. (2005) Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis. IEEE Transact Med Imaging 24: 29–44

    Article  CAS  Google Scholar 

  • McKeown MJ (2000) Cortical activation related to arm movement combinations. Muscle Nerve [Suppl] 9: S19–S25

    Article  PubMed  CAS  Google Scholar 

  • McKeown MJ, Radtke R (2001) Phasic and tonic coupling between EEG & EMG revealed with Independent Component Analysis (ICA). J Clin Neurophysiol 18: 45–57

    Article  PubMed  CAS  Google Scholar 

  • McKeown MJ, Radtke R (2001) Phasic and tonic coupling between EEG and EMG demonstrated with independent component analysis. J Clin Neurophysiol 18(1): 45–57

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, Fetz EE (1992) Coherent 25-to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89(12): 5670–5674

    Article  PubMed  CAS  Google Scholar 

  • Myers LJ, Lowery M, et al. (2003) Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis. J Neurosci Meth 124(2): 157–165

    Article  CAS  Google Scholar 

  • Nadal JP, Parga N (1994) Non-linear neurons in the low noise limit: a factorial code maximizes information transfer. Network 5: 565–581

    Article  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366(4): 580–599

    Article  PubMed  CAS  Google Scholar 

  • Pauluis Q, Baker SN, et al. (1999) Emergent oscillations in a realistic network: the role of inhibition and the effect of the spatiotemporal distribution of the input. J Comp Neurosci 6(3): 289–310

    CAS  Google Scholar 

  • Pfurtscheller G, Neuper C (1994) Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett 174(1): 93–96

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Stancak A Jr, et al. (1996) Eventrelated synchronization (ERS) in the alpha band — an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24(1–2): 39–46

    Article  PubMed  CAS  Google Scholar 

  • Pohja M, Salenius S (2003) Modulation of cortexmuscle oscillatory interaction by ischaemia-induced deafferentation. Neuroreport 14(3): 321–324

    Article  PubMed  Google Scholar 

  • Raz A, Frechter-Mazar V, et al. (2001) Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J Neurosci 21(3): RC128

    PubMed  CAS  Google Scholar 

  • Rilling G, Flandrin P, et al. (2003) On Empirical Mode Decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado

    Google Scholar 

  • Saab R, McKeown MJ, et al. (2005) A wavelet based approach for the detection of coupling in EEG signals. 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, VA

    Google Scholar 

  • Salenius S, Avikainen S, et al. (2002) Defective cortical drive to muscle in Parkinson’s disease and its improvement with levodopa. Brain 125 (Pt 3): 491–500

    Article  PubMed  Google Scholar 

  • Salenius S, Schnitzler A, et al. (1997) Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5(3): 221–228

    Article  PubMed  CAS  Google Scholar 

  • Salmelin R, Hari R (1994) Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60(2): 537–550

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, et al. (1997) A neural substrate of prediction and reward. Science 275: 1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16(20): 6402–6413

    PubMed  CAS  Google Scholar 

  • Welsh JP, Lang EJ, et al. (1995) Dynamic organization of motor control within the olivocerebellar system [comment]. Nature 374(6521): 453–457

    Article  PubMed  CAS  Google Scholar 

  • Whittington MA, Traub RD, et al. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation [comment]. Nature 373(6515): 612–615

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

McKeown, M.J., Palmer, S.J., Au, WL., McCaig, R.G., Saab, R., Abu-Gharbieh, R. (2006). Cortical muscle coupling in Parkinson’s disease (PD) bradykinesia. In: Riederer, P., Reichmann, H., Youdim, M.B.H., Gerlach, M. (eds) Parkinson’s Disease and Related Disorders. Journal of Neural Transmission. Supplementa, vol 70. Springer, Vienna . https://doi.org/10.1007/978-3-211-45295-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-45295-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28927-3

  • Online ISBN: 978-3-211-45295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics