[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Edge Energy Orchestration

  • Conference paper
  • First Online:
Economics of Grids, Clouds, Systems, and Services (GECON 2024)

Abstract

Edge computing devices have increased in number and capability over recent years. The ability to process data and execute machine learning in proximity to data generation and collection sources provides several advantages over using cloud- based data centers. We describe an orchestration mechanism that enables edge devices to make more effective use of energy resources in their proximity – a technique we refer to as “edge energy orchestration”. A software “orchestrator” can take account of renewable generation to alter how task execution on edge devices is carried out. An application scenario is used to illustrate the use of the orchestrator in practice, followed by a discussion about how this approach can be generalized to a broader set of applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahvar, E., Orgerie, A.C., Lebre, A.: Estimating energy consumption of cloud, fog, and edge computing infrastructures. IEEE Trans. Sustain. Comput. 7(2), 277–288 (2022). https://doi.org/10.1109/TSUSC.2019.2905900

    Article  Google Scholar 

  2. Ait Abdelmoula, I., et al.: Towards a sustainable edge computing framework for condition monitoring in decentralized photovoltaic systems. Heliyon 9(11), e21475 (2023). https://doi.org/10.1016/j.heliyon.2023.e21475, https://linkinghub.elsevier.com/retrieve/pii/S2405844023086838

  3. Tang, H., Yang, S., Lin, J., Tang, J., Chen, W.M., Wang, W.C., Han, S.: TinyChat: large language model on the edge (2023). https://hanlab.mit.edu/blog/tinychat

  4. Jiang, C., et al.: Energy aware edge computing: a survey. Computer Communications 151, 556–580 (2020). https://doi.org/10.1016/j.comcom.2020.01.004, https://www.sciencedirect.com/science/article/pii/S014036641930831X

  5. Li, W., et al.: On enabling sustainable edge computing with renewable energy resources. IEEE Commun. Mag. 56(5), 94–101 (2018). https://doi.org/10.1109/MCOM.2018.1700888,https://ieeexplore.ieee.org/document/8360857/

  6. Lv, X., Ge, X., Zhong, Y., Li, Q., Xiao, Y.: Energy consumption optimization for edge computing-supported cellular networks based on optimal transport theory. Sci. China Inf. Sci. 67(2) (2024). https://doi.org/10.1007/s11432-023-3855-5

  7. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016). https://doi.org/10.1109/JSAC.2016.2611964

    Article  MATH  Google Scholar 

  8. Mocnej, J., Miskuf, M., Papcun, P., Zolotova, I.: Impact of edge computing paradigm on energy consumption in IoT. IFAC-PapersOnLine 51(6), 162–167 (2018). https://doi.org/10.1016/J.IFACOL.2018.07.147

    Article  Google Scholar 

  9. Petri, I., Rana, O.F., Zamani, A.R., Rezgui, Y.: Edge-cloud orchestration: Strategies for service placement and enactment. In: IEEE International Conference on Cloud Engineering, IC2E 2019, Prague, Czech Republic, 24–27 June 2019, pp. 67–75. IEEE (2019). https://doi.org/10.1109/IC2E.2019.00020

  10. Schenato, R.: Empowering the Energy Sector; edge computing solutions for a sustainable future (2024). https://sixsq.com/blog/discover/2024/02/27/edge-computing-solutions-for-energy-sector.html

  11. Sun, H., Zhou, F., Hu, R.Q.: Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Trans. Veh. Technol. 68(3), 3052–3056 (2019). https://doi.org/10.1109/TVT.2019.2893094

    Article  MATH  Google Scholar 

  12. Tang, Q., Lyu, H., Han, G., Wang, J., Wang, K.: Partial offloading strategy for mobile edge computing considering mixed overhead of time and energy. Neural Comput. Appl. 32(19), 15383–15397 (2020). https://doi.org/10.1007/s00521-019-04401-8, https://doi.org/10.1007/s00521-019-04401-8

  13. Wang, Y., Dai, X., Wang, J.M., Bensaou, B.: A reinforcement learning approach to energy efficiency and QoS in 5G wireless networks. IEEE J. Sel. Areas Commun. 37(6), 1413–1423 (2019). https://doi.org/10.1109/JSAC.2019.2904365

    Article  MATH  Google Scholar 

  14. Xu, Y., et al.: Multi-sensor edge computing architecture for identification of failures short-circuits in wind turbine generators. Appl. Soft Comput. 101, 107053 (2021). https://doi.org/10.1016/j.asoc.2020.107053, https://linkinghub.elsevier.com/retrieve/pii/S1568494620309911

  15. Luo, Y., Pu, L., Liu, C.H.: Computing power and battery charging management for sustainable edge computing (2024). https://my.ece.msstate.edu/faculty/chliu/papers/journal/CompPower.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Valizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, V. et al. (2025). Edge Energy Orchestration. In: Naldi, M., Djemame, K., Altmann, J., Bañares, J.Á. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2024. Lecture Notes in Computer Science, vol 15358. Springer, Cham. https://doi.org/10.1007/978-3-031-81226-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81226-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81225-5

  • Online ISBN: 978-3-031-81226-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics