Abstract
Edge computing devices have increased in number and capability over recent years. The ability to process data and execute machine learning in proximity to data generation and collection sources provides several advantages over using cloud- based data centers. We describe an orchestration mechanism that enables edge devices to make more effective use of energy resources in their proximity – a technique we refer to as “edge energy orchestration”. A software “orchestrator” can take account of renewable generation to alter how task execution on edge devices is carried out. An application scenario is used to illustrate the use of the orchestrator in practice, followed by a discussion about how this approach can be generalized to a broader set of applications
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ahvar, E., Orgerie, A.C., Lebre, A.: Estimating energy consumption of cloud, fog, and edge computing infrastructures. IEEE Trans. Sustain. Comput. 7(2), 277–288 (2022). https://doi.org/10.1109/TSUSC.2019.2905900
Ait Abdelmoula, I., et al.: Towards a sustainable edge computing framework for condition monitoring in decentralized photovoltaic systems. Heliyon 9(11), e21475 (2023). https://doi.org/10.1016/j.heliyon.2023.e21475, https://linkinghub.elsevier.com/retrieve/pii/S2405844023086838
Tang, H., Yang, S., Lin, J., Tang, J., Chen, W.M., Wang, W.C., Han, S.: TinyChat: large language model on the edge (2023). https://hanlab.mit.edu/blog/tinychat
Jiang, C., et al.: Energy aware edge computing: a survey. Computer Communications 151, 556–580 (2020). https://doi.org/10.1016/j.comcom.2020.01.004, https://www.sciencedirect.com/science/article/pii/S014036641930831X
Li, W., et al.: On enabling sustainable edge computing with renewable energy resources. IEEE Commun. Mag. 56(5), 94–101 (2018). https://doi.org/10.1109/MCOM.2018.1700888,https://ieeexplore.ieee.org/document/8360857/
Lv, X., Ge, X., Zhong, Y., Li, Q., Xiao, Y.: Energy consumption optimization for edge computing-supported cellular networks based on optimal transport theory. Sci. China Inf. Sci. 67(2) (2024). https://doi.org/10.1007/s11432-023-3855-5
Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016). https://doi.org/10.1109/JSAC.2016.2611964
Mocnej, J., Miskuf, M., Papcun, P., Zolotova, I.: Impact of edge computing paradigm on energy consumption in IoT. IFAC-PapersOnLine 51(6), 162–167 (2018). https://doi.org/10.1016/J.IFACOL.2018.07.147
Petri, I., Rana, O.F., Zamani, A.R., Rezgui, Y.: Edge-cloud orchestration: Strategies for service placement and enactment. In: IEEE International Conference on Cloud Engineering, IC2E 2019, Prague, Czech Republic, 24–27 June 2019, pp. 67–75. IEEE (2019). https://doi.org/10.1109/IC2E.2019.00020
Schenato, R.: Empowering the Energy Sector; edge computing solutions for a sustainable future (2024). https://sixsq.com/blog/discover/2024/02/27/edge-computing-solutions-for-energy-sector.html
Sun, H., Zhou, F., Hu, R.Q.: Joint offloading and computation energy efficiency maximization in a mobile edge computing system. IEEE Trans. Veh. Technol. 68(3), 3052–3056 (2019). https://doi.org/10.1109/TVT.2019.2893094
Tang, Q., Lyu, H., Han, G., Wang, J., Wang, K.: Partial offloading strategy for mobile edge computing considering mixed overhead of time and energy. Neural Comput. Appl. 32(19), 15383–15397 (2020). https://doi.org/10.1007/s00521-019-04401-8, https://doi.org/10.1007/s00521-019-04401-8
Wang, Y., Dai, X., Wang, J.M., Bensaou, B.: A reinforcement learning approach to energy efficiency and QoS in 5G wireless networks. IEEE J. Sel. Areas Commun. 37(6), 1413–1423 (2019). https://doi.org/10.1109/JSAC.2019.2904365
Xu, Y., et al.: Multi-sensor edge computing architecture for identification of failures short-circuits in wind turbine generators. Appl. Soft Comput. 101, 107053 (2021). https://doi.org/10.1016/j.asoc.2020.107053, https://linkinghub.elsevier.com/retrieve/pii/S1568494620309911
Luo, Y., Pu, L., Liu, C.H.: Computing power and battery charging management for sustainable edge computing (2024). https://my.ece.msstate.edu/faculty/chliu/papers/journal/CompPower.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kumar, V. et al. (2025). Edge Energy Orchestration. In: Naldi, M., Djemame, K., Altmann, J., Bañares, J.Á. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2024. Lecture Notes in Computer Science, vol 15358. Springer, Cham. https://doi.org/10.1007/978-3-031-81226-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-81226-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81225-5
Online ISBN: 978-3-031-81226-2
eBook Packages: Computer ScienceComputer Science (R0)