Abstract
Advancing image inpainting is challenging as it requires filling user-specified regions for various intents, such as background filling and object synthesis. Existing approaches focus on either context-aware filling or object synthesis using text descriptions. However, achieving both tasks simultaneously is challenging due to differing training strategies. To overcome this challenge, we introduce PowerPaint, the first high-quality and versatile inpainting model that excels in multiple inpainting tasks. First, we introduce learnable task prompts along with tailored fine-tuning strategies to guide the model’s focus on different inpainting targets explicitly. This enables PowerPaint to accomplish various inpainting tasks by utilizing different task prompts, resulting in state-of-the-art performance. Second, we demonstrate the versatility of the task prompt in PowerPaint by showcasing its effectiveness as a negative prompt for object removal. Moreover, we leverage prompt interpolation techniques to enable controllable shape-guided object inpainting, enhancing the model’s applicability in shape-guided applications. Finally, we conduct extensive experiments and applications to verify the effectiveness of PowerPaint. We release our codes and models on our project page: https://powerpaint.github.io/.
J. Zhuang—Work done during an internship in Shanghai Artificial Intelligence Lab.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adobe firefly (2023). https://firefly.adobe.com/
Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. TOG 28(3), 24:1–24:11 (2009)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH. pp. 417–424 (2000)
Cao, C., Cai, Y., Dong, Q., Wang, Y., Fu, Y.: Leftrefill: filling right canvas based on left reference through generalized text-to-image diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7705–7715 (2024)
Cheng, Y.C., Lin, C.H., Lee, H.Y., Ren, J., Tulyakov, S., Yang, M.H.: Inout: diverse image outpainting via GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11431–11440 (2022)
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. TIP 13(9), 1200–1212 (2004)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advance in Neural Information Processing System, vol. 34, pp. 8780–8794 (2021)
Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advance in Neural Information Processing System, vol. 33, pp. 6840–6851 (2020)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (2021)
Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1931–1941 (2023)
Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z
Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models (2023)
Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR, pp. 3911–3919 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014 Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471 (2022)
Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: Edgeconnect: generative image inpainting with adversarial edge learning. In: ICCVW (2019)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advance in Neural Information Processing System, vol. 35, pp. 36479–36494 (2022)
Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. In: Advance in Neural Information Processing System, vol. 35, pp. 25278–25294 (2022)
Sun, Y., Liu, Y., Tang, Y., Pei, W., Chen, K.: Anycontrol: create your artwork with versatile control on text-to-image generation. arXiv preprint arXiv:2406.18958 (2024)
Suvorov, R., et al.: Resolution-robust large mask inpainting with Fourier convolutions. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2149–2159 (2022)
Tang, J., et al.: Make-it-vivid: dressing your animatable biped cartoon characters from text. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6243–6253 (2024)
Teterwak, P., et al.: Boundless: generative adversarial networks for image extension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10521–10530 (2019)
Wang, S., et al.: Imagen editor and editbench: advancing and evaluating text-guided image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18359–18369 (2023)
Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: text and shape guided object inpainting with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22428–22437 (2023)
Yang, S., Chen, X., Liao, J.: Uni-paint: a unified framework for multimodal image inpainting with pretrained diffusion model. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 3190–3199 (2023)
Yang, Z., Dong, J., Liu, P., Yang, Y., Yan, S.: Very long natural scenery image prediction by outpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10561–10570 (2019)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR, pp. 5505–5514 (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)
Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: CVPR, pp. 1486–1494 (2019)
Zeng, Y., Fu, J., Chao, H., Guo, B.: Aggregated contextual transformations for high-resolution image inpainting. IEEE Trans. Visual Comput. Graph. 29(7), 3266–3280 (2022)
Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)
Zhang, Y., Xing, Z., Zeng, Y., Fang, Y., Chen, K.: Pia: your personalized image animator via plug-and-play modules in text-to-image models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7747–7756 (2024)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Acknowledgments
This work is supported by the National Key R&D Program of China (No. 2022YFB4701400/4701402, No. 2022ZD0161600), SSTIC Grant (KJZD2023092311510 6012, KJZD20230923114916032), and Beijing Key Lab of Networked Multimedia.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhuang, J., Zeng, Y., Liu, W., Yuan, C., Chen, K. (2025). A Task Is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15116. Springer, Cham. https://doi.org/10.1007/978-3-031-73636-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-73636-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73635-3
Online ISBN: 978-3-031-73636-0
eBook Packages: Computer ScienceComputer Science (R0)