Abstract
Domain shift significantly influences the performance of deep learning algorithms, particularly for object detection within volumetric 3D images. Annotated training data is essential for deep learning-based object detection. However, annotating densely packed objects is time-consuming and costly. Instead, we suggest training models on individually scanned objects, causing a domain shift between training and detection data. To address this challenge, we introduce the BugNIST dataset, comprising 9154 micro-CT volumes of 12 bug types and 388 volumes of tightly packed bug mixtures. This dataset is characterized by having objects with the same appearance in the source and target domains, which is uncommon for other benchmark datasets for domain shift. During training, individual bug volumes labeled by class are utilized, while testing employs mixtures with center point annotations and bug type labels. Together with the dataset, we provide a baseline detection analysis, with the aim of advancing the field of 3D object detection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armato, S.G., et al.: PROSTATEx challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. J. Med. Imaging 5(4), 044501–044501 (2018)
Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nnDetection: a self-configuring method for medical object detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_51
Cardoso, M.J., et al.: MONAI: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)
Charytanowicz, M., Kulczycki, P., Kowalski, P.A., Łukasik, S., Czabak-Garbacz, R.: An evaluation of utilizing geometric features for wheat grain classification using X-ray images. Comput. Electron. Agric. 144, 260–268 (2018)
Chaudhary, S., Sadbhawna, S., Jakhetiya, V., Subudhi, B.N., Baid, U., Guntuku, S.C.: Detecting COVID-19 and community acquired pneumonia using chest CT scan images with deep learning. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8583–8587. IEEE (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
De Carlo, F., et al.: TomoBank: a tomographic data repository for computational x-ray science. Meas. Sci. Technol. 29(3), 034004 (2018)
Dorent, R., et al.: CrossMoDA 2021 challenge: benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Med. Image Anal. 83, 102628 (2023)
Du, Z., Hu, Y., Ali Buttar, N., Mahmood, A.: X-ray computed tomography for quality inspection of agricultural products: a review. Food Sci. Nutr. 7(10), 3146–3160 (2019)
Einarsdóttir, H., et al.: Novelty detection of foreign objects in food using multi-modal X-ray imaging. Food Control 67, 39–47 (2016)
European Organization For Nuclear Research, OpenAIRE: Zenodo (2013). https://doi.org/10.25495/7GXK-RD71, https://www.zenodo.org/
Flitton, G., Mouton, A., Breckon, T.P.: Object classification in 3D baggage security computed tomography imagery using visual codebooks. Pattern Recogn. 48(8), 2489–2499 (2015)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)
Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)
Harmon, S.A., et al.: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 4080 (2020)
Hipsley, C.A., Aguilar, R., Black, J.R., Hocknull, S.A.: High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing. Sci. Rep. 10(1), 13863 (2020)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Jaeger, P.F., et al.: Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection. In: Machine Learning for Health Workshop, pp. 171–183. PMLR (2020)
Jain, Y., et al.: SenNet + HOA - hacking the human vasculature in 3D (2023). https://kaggle.com/competitions/blood-vessel-segmentation
Jarolmasjed, S., Espinoza, C.Z., Sankaran, S., Khot, L.R.: Postharvest bitter pit detection and progression evaluation in ‘Honeycrisp’ apples using computed tomography images. Postharvest Biol. Technol. 118, 35–42 (2016)
Jeppesen, N., Christensen, A.N., Dahl, V.A., Dahl, A.B.: Sparse layered graphs for multi-object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12777–12785 (2020)
Jin, L., et al.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMedicine 62, 103106 (2020)
Ker, J., Singh, S.P., Bai, Y., Rao, J., Lim, T., Wang, L.: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors 19(9), 2167 (2019)
Kirillov, A., et al.: Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026 (2023)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)
Li, Y., Xie, S., Chen, X., Dollar, P., He, K., Girshick, R.: Benchmarking detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429 (2021)
Li, Y., Fan, Y.: Medical image segmentation with domain adaptation: A survey. arXiv preprint arXiv:2311.01702 (2023)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)
Maier-Hein, L., et al.: Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9(1), 5217 (2018)
Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: International Conference on Machine Learning, pp. 10–18. PMLR (2013)
Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)
OECD: Health at a Glance 2023 (2023). https://doi.org/10.1787/7a7afb35-en
Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks 22(2), 199–210 (2010)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)
Rawson, S.D., Maksimcuka, J., Withers, P.J., Cartmell, S.H.: X-ray computed tomography in life sciences. BMC Biol. 18(1), 1–15 (2020)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 28 (2015)
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)
Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Learning from synthetic data: addressing domain shift for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3752–3761 (2018)
Serte, S., Demirel, H.: Deep learning for diagnosis of COVID-19 using 3D CT scans. Comput. Biol. Med. 132, 104306 (2021)
Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)
Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. CoRR abs/1902.09063 (2019). http://arxiv.org/abs/1902.09063
Sun, T., et al.: SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21371–21382 (2022)
Timmins, K.M., et al.: Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: the ADAM challenge. Neuroimage 238, 118216 (2021)
TorchVision maintainers and contributors: Torchvision: Pytorch’s computer vision library. https://github.com/pytorch/vision (2016)
Trusler, M.M., Sturrock, C.J., Vane, C.H., Cook, S., Lomax, B.H.: X-ray computed tomography: a novel non-invasive approach for the detection of microplastics in sediments? Mar. Pollut. Bull. 194, 115350 (2023)
Velayudhan, D., Hassan, T., Damiani, E., Werghi, N.: Recent advances in baggage threat detection: a comprehensive and systematic survey. ACM Comput. Surv. 55(8), 1–38 (2022). https://doi.org/10.1145/3549932
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)
Walsh, C., et al.: Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18(12), 1532–1541 (2021)
Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)
Wang, M., Liu, Y., Yuan, J., Wang, S., Wang, Z., Wang, W.: Inter-class and inter-domain semantic augmentation for domain generalization. IEEE Trans. Image Process. 33, 1338–1347 (2024)
Wang, Q., Bhowmik, N., Breckon, T.P.: Multi-class 3D object detection within volumetric 3D computed tomography baggage security screening imagery. In: Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 13–18. IEEE (2020)
Wang, Q., Breckon, T.P.: Contraband materials detection within volumetric 3D computed tomography baggage security screening imagery. In: Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 75–82. IEEE (2021)
Withers, P.J., et al.: X-ray computed tomography. Nat. Rev. Methods Primers 1(1), 18 (2021)
Wu, D., et al.: A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits. Plant Commun. 2(2), 100165 (2021)
Xiao, Z., Liu, B., Geng, L., Zhang, F., Liu, Y.: Segmentation of lung nodules using improved 3D-UNet neural network. Symmetry 12(11), 1787 (2020)
Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: Proceedings of the International Conference on Pattern Recognition (ICPR). vol. 2, pp. 957–960. IEEE (2002)
Xu, F., Tenenbaum, J.B.: Word learning as bayesian inference. Psychol. Rev. 114(2), 245 (2007)
Yan, Y.T., Chua, S., DeCarlo, T.M., Kempf, P., Morgan, K.M., Switzer, A.D.: Core-CT: a MATLAB application for the quantitative analysis of sediment and coral cores from X-ray computed tomography (CT). Comput. Geosci. 156, 104871 (2021)
Zhao, W.X., et al.: A survey of large language models. arXiv preprint arXiv:2303.18223 (2023)
Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. Proc. AAAI Conf. Artif. Intell. 34(07), 13025–13032 (2020). https://doi.org/10.1609/aaai.v34i07.7003, https://ojs.aaai.org/index.php/AAAI/article/view/7003
Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)
Acknowledgments
We acknowledge the 3D Imaging Center at DTU, the Infrastructure for Quantitative AI-based Tomography (QUAITOM), supported by the Novo Nordisk Foundation (grant number NNF21OC0069766) and STUDIOS: Segmenting Tomograms Using Different Interpretation of Simplicity funded by the Villum Foundation (grant number VIL50425).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jensen, P.M., Dahl, V.A., Engberg, R., Gundlach, C., Kjer, H.M., Dahl, A.B. (2025). BugNIST a Large Volumetric Dataset for Object Detection Under Domain Shift. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-73411-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73410-6
Online ISBN: 978-3-031-73411-3
eBook Packages: Computer ScienceComputer Science (R0)