[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

BugNIST a Large Volumetric Dataset for Object Detection Under Domain Shift

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Domain shift significantly influences the performance of deep learning algorithms, particularly for object detection within volumetric 3D images. Annotated training data is essential for deep learning-based object detection. However, annotating densely packed objects is time-consuming and costly. Instead, we suggest training models on individually scanned objects, causing a domain shift between training and detection data. To address this challenge, we introduce the BugNIST dataset, comprising 9154 micro-CT volumes of 12 bug types and 388 volumes of tightly packed bug mixtures. This dataset is characterized by having objects with the same appearance in the source and target domains, which is uncommon for other benchmark datasets for domain shift. During training, individual bug volumes labeled by class are utilized, while testing employs mixtures with center point annotations and bug type labels. Together with the dataset, we provide a baseline detection analysis, with the aim of advancing the field of 3D object detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://abdahl.github.io/bugnist/.

References

  1. Armato, S.G., et al.: PROSTATEx challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. J. Med. Imaging 5(4), 044501–044501 (2018)

    Article  Google Scholar 

  2. Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  4. Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nnDetection: a self-configuring method for medical object detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_51

    Chapter  Google Scholar 

  5. Cardoso, M.J., et al.: MONAI: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  6. Charytanowicz, M., Kulczycki, P., Kowalski, P.A., Łukasik, S., Czabak-Garbacz, R.: An evaluation of utilizing geometric features for wheat grain classification using X-ray images. Comput. Electron. Agric. 144, 260–268 (2018)

    Article  Google Scholar 

  7. Chaudhary, S., Sadbhawna, S., Jakhetiya, V., Subudhi, B.N., Baid, U., Guntuku, S.C.: Detecting COVID-19 and community acquired pneumonia using chest CT scan images with deep learning. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8583–8587. IEEE (2021)

    Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  10. De Carlo, F., et al.: TomoBank: a tomographic data repository for computational x-ray science. Meas. Sci. Technol. 29(3), 034004 (2018)

    Article  Google Scholar 

  11. Dorent, R., et al.: CrossMoDA 2021 challenge: benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Med. Image Anal. 83, 102628 (2023)

    Article  Google Scholar 

  12. Du, Z., Hu, Y., Ali Buttar, N., Mahmood, A.: X-ray computed tomography for quality inspection of agricultural products: a review. Food Sci. Nutr. 7(10), 3146–3160 (2019)

    Article  Google Scholar 

  13. Einarsdóttir, H., et al.: Novelty detection of foreign objects in food using multi-modal X-ray imaging. Food Control 67, 39–47 (2016)

    Article  Google Scholar 

  14. European Organization For Nuclear Research, OpenAIRE: Zenodo (2013). https://doi.org/10.25495/7GXK-RD71, https://www.zenodo.org/

  15. Flitton, G., Mouton, A., Breckon, T.P.: Object classification in 3D baggage security computed tomography imagery using visual codebooks. Pattern Recogn. 48(8), 2489–2499 (2015)

    Article  Google Scholar 

  16. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  18. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2021)

    Article  Google Scholar 

  19. Harmon, S.A., et al.: Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 4080 (2020)

    Article  Google Scholar 

  20. Hipsley, C.A., Aguilar, R., Black, J.R., Hocknull, S.A.: High-throughput microCT scanning of small specimens: preparation, packing, parameters and post-processing. Sci. Rep. 10(1), 13863 (2020)

    Article  Google Scholar 

  21. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  22. Jaeger, P.F., et al.: Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection. In: Machine Learning for Health Workshop, pp. 171–183. PMLR (2020)

    Google Scholar 

  23. Jain, Y., et al.: SenNet + HOA - hacking the human vasculature in 3D (2023). https://kaggle.com/competitions/blood-vessel-segmentation

  24. Jarolmasjed, S., Espinoza, C.Z., Sankaran, S., Khot, L.R.: Postharvest bitter pit detection and progression evaluation in ‘Honeycrisp’ apples using computed tomography images. Postharvest Biol. Technol. 118, 35–42 (2016)

    Google Scholar 

  25. Jeppesen, N., Christensen, A.N., Dahl, V.A., Dahl, A.B.: Sparse layered graphs for multi-object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12777–12785 (2020)

    Google Scholar 

  26. Jin, L., et al.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMedicine 62, 103106 (2020)

    Article  Google Scholar 

  27. Ker, J., Singh, S.P., Bai, Y., Rao, J., Lim, T., Wang, L.: Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans. Sensors 19(9), 2167 (2019)

    Article  Google Scholar 

  28. Kirillov, A., et al.: Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026 (2023)

    Google Scholar 

  29. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  30. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  31. Li, Y., Xie, S., Chen, X., Dollar, P., He, K., Girshick, R.: Benchmarking detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429 (2021)

  32. Li, Y., Fan, Y.: Medical image segmentation with domain adaptation: A survey. arXiv preprint arXiv:2311.01702 (2023)

  33. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  34. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  35. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  36. Maier-Hein, L., et al.: Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9(1), 5217 (2018)

    Article  Google Scholar 

  37. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: International Conference on Machine Learning, pp. 10–18. PMLR (2013)

    Google Scholar 

  38. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  Google Scholar 

  39. OECD: Health at a Glance 2023 (2023). https://doi.org/10.1787/7a7afb35-en

  40. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks 22(2), 199–210 (2010)

    Article  Google Scholar 

  41. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  42. Rawson, S.D., Maksimcuka, J., Withers, P.J., Cartmell, S.H.: X-ray computed tomography in life sciences. BMC Biol. 18(1), 1–15 (2020)

    Article  Google Scholar 

  43. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 28 (2015)

    Google Scholar 

  45. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  46. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  47. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  48. Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Learning from synthetic data: addressing domain shift for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3752–3761 (2018)

    Google Scholar 

  49. Serte, S., Demirel, H.: Deep learning for diagnosis of COVID-19 using 3D CT scans. Comput. Biol. Med. 132, 104306 (2021)

    Article  Google Scholar 

  50. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  51. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. CoRR abs/1902.09063 (2019). http://arxiv.org/abs/1902.09063

  52. Sun, T., et al.: SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21371–21382 (2022)

    Google Scholar 

  53. Timmins, K.M., et al.: Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: the ADAM challenge. Neuroimage 238, 118216 (2021)

    Article  Google Scholar 

  54. TorchVision maintainers and contributors: Torchvision: Pytorch’s computer vision library. https://github.com/pytorch/vision (2016)

  55. Trusler, M.M., Sturrock, C.J., Vane, C.H., Cook, S., Lomax, B.H.: X-ray computed tomography: a novel non-invasive approach for the detection of microplastics in sediments? Mar. Pollut. Bull. 194, 115350 (2023)

    Article  Google Scholar 

  56. Velayudhan, D., Hassan, T., Damiani, E., Werghi, N.: Recent advances in baggage threat detection: a comprehensive and systematic survey. ACM Comput. Surv. 55(8), 1–38 (2022). https://doi.org/10.1145/3549932

  57. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  58. Walsh, C., et al.: Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18(12), 1532–1541 (2021)

    Article  Google Scholar 

  59. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  60. Wang, M., Liu, Y., Yuan, J., Wang, S., Wang, Z., Wang, W.: Inter-class and inter-domain semantic augmentation for domain generalization. IEEE Trans. Image Process. 33, 1338–1347 (2024)

    Google Scholar 

  61. Wang, Q., Bhowmik, N., Breckon, T.P.: Multi-class 3D object detection within volumetric 3D computed tomography baggage security screening imagery. In: Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 13–18. IEEE (2020)

    Google Scholar 

  62. Wang, Q., Breckon, T.P.: Contraband materials detection within volumetric 3D computed tomography baggage security screening imagery. In: Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 75–82. IEEE (2021)

    Google Scholar 

  63. Withers, P.J., et al.: X-ray computed tomography. Nat. Rev. Methods Primers 1(1), 18 (2021)

    Article  Google Scholar 

  64. Wu, D., et al.: A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits. Plant Commun. 2(2), 100165 (2021)

    Google Scholar 

  65. Xiao, Z., Liu, B., Geng, L., Zhang, F., Liu, Y.: Segmentation of lung nodules using improved 3D-UNet neural network. Symmetry 12(11), 1787 (2020)

    Article  Google Scholar 

  66. Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: Proceedings of the International Conference on Pattern Recognition (ICPR). vol. 2, pp. 957–960. IEEE (2002)

    Google Scholar 

  67. Xu, F., Tenenbaum, J.B.: Word learning as bayesian inference. Psychol. Rev. 114(2), 245 (2007)

    Article  Google Scholar 

  68. Yan, Y.T., Chua, S., DeCarlo, T.M., Kempf, P., Morgan, K.M., Switzer, A.D.: Core-CT: a MATLAB application for the quantitative analysis of sediment and coral cores from X-ray computed tomography (CT). Comput. Geosci. 156, 104871 (2021)

    Article  Google Scholar 

  69. Zhao, W.X., et al.: A survey of large language models. arXiv preprint arXiv:2303.18223 (2023)

  70. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. Proc. AAAI Conf. Artif. Intell. 34(07), 13025–13032 (2020). https://doi.org/10.1609/aaai.v34i07.7003, https://ojs.aaai.org/index.php/AAAI/article/view/7003

  71. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the 3D Imaging Center at DTU, the Infrastructure for Quantitative AI-based Tomography (QUAITOM), supported by the Novo Nordisk Foundation (grant number NNF21OC0069766) and STUDIOS: Segmenting Tomograms Using Different Interpretation of Simplicity funded by the Villum Foundation (grant number VIL50425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Bjorholm Dahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jensen, P.M., Dahl, V.A., Engberg, R., Gundlach, C., Kjer, H.M., Dahl, A.B. (2025). BugNIST a Large Volumetric Dataset for Object Detection Under Domain Shift. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73411-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73410-6

  • Online ISBN: 978-3-031-73411-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics