Abstract
Temporal video alignment aims to synchronize the key events like object interactions or action phase transitions in two videos. Such methods could benefit various video editing, processing, and understanding tasks. However, existing approaches operate under the restrictive assumption that a suitable video pair for alignment is given, significantly limiting their broader applicability. To address this, we re-pose temporal alignment as a search problem and introduce the task of Alignable Video Retrieval (AVR). Given a query video, our approach can identify well-alignable videos from a large collection of clips and temporally synchronize them to the query. To achieve this, we make three key contributions: 1) we introduce DRAQ, a video alignability indicator to identify and re-rank the best alignable video from a set of candidates; 2) we propose an effective and generalizable frame-level video feature design to improve the alignment performance of several off-the-shelf feature representations, and 3) we propose a novel benchmark and evaluation protocol for AVR using cycle-consistency metrics. Our experiments on 3 datasets, including large-scale Kinetics700, demonstrate the effectiveness of our approach in identifying alignable video pairs from diverse datasets.
I. R. Dave—Majority of work done as an intern at Adobe Research, USA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baraldi, L., Douze, M., Cucchiara, R., Jégou, H.: LAMV: learning to align and match videos with kernelized temporal layers. In: Proceedings of the CVPR, pp. 7804–7813 (2018)
Benaim, S., et al.: SpeedNet: learning the speediness in videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9922–9931 (2020)
Black, A., et al.: Vader: video alignment differencing and retrieval. arXiv preprint arXiv:2303.13193 (2023)
Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)
Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2Video: video editing using image diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23206–23217 (2023)
Chen, M., Wei, F., Li, C., Cai, D.: Frame-wise action representations for long videos via sequence contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13801–13810 (2022)
Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series. In: International Conference on Machine Learning, pp. 894–903. PMLR (2017)
Dave, I., Gupta, R., Rizve, M.N., Shah, M.: TCLR: temporal contrastive learning for video representation. Comput. Vis. Image Underst. 103406 (2022). https://doi.org/10.1016/j.cviu.2022.103406
Dave, I., Scheffer, Z., Kumar, A., Shiraz, S., Rawat, Y.S., Shah, M.: GabriellaV2: towards better generalization in surveillance videos for action detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, pp. 122–132 (2022)
Dave, I.R., Jenni, S., Shah, M.: No more shortcuts: realizing the potential of temporal self-supervision. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 1481–1491 (2024)
Dave, I.R., Rizve, M.N., Shah, M.: Finepseudo: improving pseudo-labelling through temporal-alignablity for semi-supervised fine-grained action recognition. In: European Conference on Computer Vision (2024)
Douze, M., Revaud, J., Verbeek, J.J., Jégou, H., Schmid, C.: Circulant temporal encoding for video retrieval and temporal alignment. IJCV 119, 291–306 (2015)
Dvornik, M., Hadji, I., Derpanis, K.G., Garg, A., Jepson, A.: Drop-DTW: aligning common signal between sequences while dropping outliers. In: NeurIPS, vol. 34, pp. 13782–13793 (2021)
Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: Temporal cycle-consistency learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1801–1810 (2019)
Epstein, D., Chen, B., Vondrick, C.: Oops! predicting unintentional action in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 919–929 (2020)
Fakhfour, N., ShahverdiKondori, M., Mohammadzade, H.: Video alignment using unsupervised learning of local and global features. arXiv preprint arXiv:2304.06841 (2023)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)
Fernando, B., Bilen, H., Gavves, E., Gould, S.: Self-supervised video representation learning with odd-one-out networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5729–5738. IEEE (2017)
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)
Gu, C., et al.: AVA: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6047–6056 (2018)
Hadji, I., Derpanis, K.G., Jepson, A.D.: Representation learning via global temporal alignment and cycle-consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11068–11077 (2021)
Han, Z., He, X., Tang, M., Lv, Y.: Video similarity and alignment learning on partial video copy detection. In: Proceedings of the ACM International Conference on Multimedia, pp. 4165–4173 (2021)
Haresh, S., et al.: Learning by aligning videos in time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5548–5558 (2021)
He, S., et al.: TransVCL: attention-enhanced video copy localization network with flexible supervision. In: AAAI, vol. 37, pp. 799–807 (2023)
Jenni, S., Black, A., Collomosse, J.: Audio-visual contrastive learning with temporal self-supervision. arXiv preprint arXiv:2302.07702 (2023)
Jenni, S., Jin, H.: Time-equivariant contrastive video representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9970–9980 (2021)
Jenni, S., Meishvili, G., Favaro, P.: Video representation learning by recognizing temporal transformations. In: The European Conference on Computer Vision (2020)
Jenni, S., Woodson, M., Heilbron, F.C.: Video-retime: learning temporally varying speediness for time remapping. arXiv preprint arXiv:2205.05609 (2022)
Jiang, Y.G., Wang, J.: Partial copy detection in videos: a benchmark and an evaluation of popular methods. IEEE Trans. Big Data 2(1), 32–42 (2016)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Lee, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Unsupervised representation learning by sorting sequences. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 667–676 (2017)
Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 527–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_32
Müller, M.: Dynamic time warping. Information retrieval for music and motion, pp. 69–84 (2007)
Qian, R., et al.: Spatiotemporal contrastive video representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6964–6974 (2021)
Sermanet, P., et al.: Time-contrastive networks: self-supervised learning from video. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1134–1141. IEEE (2018)
Singer, U., et al.: Make-a-video: text-to-video generation without text-video data. arXiv preprint arXiv:2209.14792 (2022)
Sivic, J., Zisserman, A.: Video google: efficient visual search of videos. Toward category-level object recognition, pp. 127–144 (2006)
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Tan, W., Guo, H., Liu, R.: A fast partial video copy detection using KNN and global feature database. In: Proceedings of the WCACV, pp. 2191–2199 (2022)
Thoker, F.M., Doughty, H., Snoek, C.G.: Tubelet-contrastive self-supervision for video-efficient generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13812–13823 (2023)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)
Wei, D., Lim, J., Zisserman, A., Freeman, W.T.: Learning and using the arrow of time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8052–8060 (2018)
Zhang, H., Liu, D., Zheng, Q., Su, B.: Modeling video as stochastic processes for fine-grained video representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2225–2234 (2023)
Zhang, W., Zhu, M., Derpanis, K.G.: From actemes to action: a strongly-supervised representation for detailed action understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2248–2255 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dave, I.R., Heilbron, F.C., Shah, M., Jenni, S. (2025). Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15066. Springer, Cham. https://doi.org/10.1007/978-3-031-73242-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-73242-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73241-6
Online ISBN: 978-3-031-73242-3
eBook Packages: Computer ScienceComputer Science (R0)