[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Framework for Efficient Model Evaluation Through Stratification, Sampling, and Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15146))

Included in the following conference series:

  • 69 Accesses

Abstract

Model performance evaluation is a critical and expensive task in machine learning and computer vision. Without clear guidelines, practitioners often estimate model accuracy using a one-time completely random selection of the data. However, by employing tailored sampling and estimation strategies, one can obtain more precise estimates and reduce annotation costs. In this paper, we propose a statistical framework for model evaluation that includes stratification, sampling, and estimation components. We examine the statistical properties of each component and evaluate their efficiency (precision). One key result of our work is that stratification via \(k\)-means clustering based on accurate predictions of model performance yields efficient estimators. Our experiments on computer vision datasets show that this method consistently provides more precise accuracy estimates than the traditional simple random sampling, even with substantial efficiency gains of 10x. We also find that model-assisted estimators, which leverage predictions of model accuracy on the unlabeled portion of the dataset, are generally more efficient than the traditional estimates based solely on the labeled data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In preliminary experiments we assessed other model-assisted estimators in the class of “generalized” regression estimators [8, 83, 100] and found results comparable to \(\texttt{DF}\).

References

  1. Angelopoulos, A.N., Bates, S., Fannjiang, C., Jordan, M.I., Zrnic, T.: Prediction-powered inference. Science 382(6671), 669–674 (2023)

    Article  MathSciNet  Google Scholar 

  2. Angelopoulos, A.N., Duchi, J.C., Zrnic, T.: Ppi++: Efficient prediction-powered inference. arXiv preprint arXiv:2311.01453 (2023)

  3. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671 (2019)

  4. Baek, C., Jiang, Y., Raghunathan, A., Kolter, J.Z.: Agreement-on-the-line: predicting the performance of neural networks under distribution shift. Adv. Neural. Inf. Process. Syst. 35, 19274–19289 (2022)

    Google Scholar 

  5. Barbu, A., et al.: Objectnet: a large-scale bias-controlled dataset for pushing the limits of object recognition models. Adv. Neural Inform. Process. Syst. 32 (2019)

    Google Scholar 

  6. Beery, S., Cole, E., Gjoka, A.: The iwildcam 2020 competition dataset. arXiv preprint arXiv:2004.10340 (2020)

  7. Breidt, F.J., Claeskens, G., Opsomer, J.: Model-assisted estimation for complex surveys using penalised splines. Biometrika 92(4), 831–846 (2005)

    Article  MathSciNet  Google Scholar 

  8. Breidt, F.J., Opsomer, J.D.: Model-assisted survey estimation with modern prediction techniques. Stat. Sci. 32(2), 190–205 (2017). https://doi.org/10.1214/16-STS589

    Article  MathSciNet  Google Scholar 

  9. Brus, D.J.: Spatial sampling with R. CRC Press (2022)

    Google Scholar 

  10. Chen, M., Goel, K., Sohoni, N.S., Poms, F., Fatahalian, K., Ré, C.: Mandoline: Model evaluation under distribution shift. In: International Conference on Machine Learning, pp. 1617–1629. PMLR (2021)

    Google Scholar 

  11. Chen, T., Lumley, T.: Optimal multiwave sampling for regression modeling in two-phase designs. Stat. Med. 39(30), 4912–4921 (2020)

    Article  MathSciNet  Google Scholar 

  12. Chen, T., Lumley, T.: Optimal sampling for design-based estimators of regression models. Stat. Med. 41(8), 1482–1497 (2022)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y., Zhang, S., Song, R.: Scoring your prediction on unseen data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 3279–3288 (June 2023)

    Google Scholar 

  14. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  15. Chouldechova, A., Deng, S., Wang, Y., Xia, W., Perona, P.: Unsupervised and semi-supervised bias benchmarking in face recognition. In: European Conference on Computer Vision, pp. 289–306. Springer (2022). https://doi.org/10.1007/978-3-031-19778-9_17

  16. Chu, W., Zinkevich, M., Li, L., Thomas, A., Tseng, B.: Unbiased online active learning in data streams. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 195–203 (2011)

    Google Scholar 

  17. Chuang, C.Y., Torralba, A., Jegelka, S.: Estimating generalization under distribution shifts via domain-invariant representations. arXiv preprint arXiv:2007.03511 (2020)

  18. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  19. Clark, R.G., Steel, D.G.: Sample design for analysis using high-influence probability sampling. J. R. Stat. Soc. Ser. A Stat. Soc. 185(4), 1733–1756 (2022)

    Article  MathSciNet  Google Scholar 

  20. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  21. Cochran, W.G.: Sampling Techniques. John Wiley & Sons (1977)

    Google Scholar 

  22. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artif. Intell. Res. 4, 129–145 (1996)

    Article  Google Scholar 

  23. Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  24. Deng, W., Gould, S., Zheng, L.: What does rotation prediction tell us about classifier accuracy under varying testing environments? In: International Conference on Machine Learning, pp. 2579–2589. PMLR (2021)

    Google Scholar 

  25. Deng, W., Zheng, L.: Are labels always necessary for classifier accuracy evaluation? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15069–15078 (2021)

    Google Scholar 

  26. Emma, D., Jared, J., Cukierski, W.: Diabetic retinopathy detection (2015). https://kaggle.com/competitions/diabetic-retinopathy-detection

  27. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

  28. Farquhar, S., Gal, Y., Rainforth, T.: On statistical bias in active learning: How and when to fix it. arXiv preprint arXiv:2101.11665 (2021)

  29. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp. 178–178. IEEE (2004)

    Google Scholar 

  30. Fuller, W.A.: Sampling Statistics. John Wiley & Sons (2011)

    Google Scholar 

  31. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  32. Ganti, R., Gray, A.: Upal: Unbiased pool based active learning. In: Artificial Intelligence and Statistics, pp. 422–431. PMLR (2012)

    Google Scholar 

  33. Garg, S., Balakrishnan, S., Lipton, Z.C., Neyshabur, B., Sedghi, H.: Leveraging unlabeled data to predict out-of-distribution performance. arXiv preprint arXiv:2201.04234 (2022)

  34. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Inter. J. Robot. Res. (IJRR) (2013)

    Google Scholar 

  35. Graubardand, B.I., Korn, E.L.: Inference for superpopulation parameters using sample surveys. Stat. Sci. 17(1), 73–96 (2002)

    Article  MathSciNet  Google Scholar 

  36. Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., Schmidt, L.: Predicting with confidence on unseen distributions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1134–1144 (2021)

    Google Scholar 

  37. Hájek, J.: Optimal strategy and other problems in probability sampling. Časopis pro pěstování matematiky 84(4), 387–423 (1959)

    Article  Google Scholar 

  38. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  39. Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: calibration for the (computationally-identifiable) masses. In: International Conference on Machine Learning, pp. 1939–1948. PMLR (2018)

    Google Scholar 

  40. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Selected Topics Appli. Earth Observations Remote Sensing (2019)

    Google Scholar 

  41. Hendrycks, D., et al.: The many faces of robustness: a critical analysis of out-of-distribution generalization. In: ICCV (2021)

    Google Scholar 

  42. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. In: CVPR (2021)

    Google Scholar 

  43. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47(260), 663–685 (1952)

    Article  MathSciNet  Google Scholar 

  44. Ilharco, G., et al.: Openclip (2021). https://doi.org/10.5281/zenodo.5143773

  45. Imberg, H., Axelson-Fisk, M., Jonasson, J.: Optimal subsampling designs. arXiv preprint arXiv:2304.03019 (2023)

  46. Imberg, H., Jonasson, J., Axelson-Fisk, M.: Optimal sampling in unbiased active learning. In: International Conference on Artificial Intelligence and Statistics, pp. 559–569. PMLR (2020)

    Google Scholar 

  47. Imberg, H., Yang, X., Flannagan, C., Bärgman, J.: Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples. arXiv preprint arXiv:2212.10024 (2022)

  48. Isaki, C.T., Fuller, W.A.: Survey design under the regression superpopulation model. J. Am. Stat. Assoc. 77(377), 89–96 (1982)

    Article  MathSciNet  Google Scholar 

  49. Jiang, Y., Nagarajan, V., Baek, C., Kolter, J.Z.: Assessing generalization of sgd via disagreement. arXiv preprint arXiv:2106.13799 (2021)

  50. Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., Girshick, R.: Clevr: a diagnostic dataset for compositional language and elementary visual reasoning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2901–2910 (2017)

    Google Scholar 

  51. Kim, M.P., Kern, C., Goldwasser, S., Kreuter, F., Reingold, O.: Universal adaptability: target-independent inference that competes with propensity scoring. Proc. Nat. Acad. Sci. 119(4), e2108097119 (2022)

    Article  Google Scholar 

  52. Kirsch, A., Van Amersfoort, J., Gal, Y.: Batchbald: efficient and diverse batch acquisition for deep bayesian active learning. Adv. Neural Inform. Process. Syst. 32 (2019)

    Google Scholar 

  53. Koh, P.W., et al.: Wilds: a benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637–5664. PMLR (2021)

    Google Scholar 

  54. Kossen, J., Farquhar, S., Gal, Y., Rainforth, T.: Active surrogate estimators: an active learning approach to label-efficient model evaluation. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 24557–24570. Curran Associates, Inc. (2022)

    Google Scholar 

  55. Kossen, J., Farquhar, S., Gal, Y., Rainforth, T.: Active testing: sample-efficient model evaluation. In: International Conference on Machine Learning, pp. 5753–5763. PMLR (2021)

    Google Scholar 

  56. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia (2013)

    Google Scholar 

  57. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  58. Kull, M., Flach, P.: Novel decompositions of proper scoring rules for classification: score adjustment as precursor to calibration. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 68–85. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23528-8_5

    Chapter  Google Scholar 

  59. LAION AI: Clip benchmark. https://github.com/LAION-AI/CLIP_benchmark

  60. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004. vol. 2, pp. II–104. IEEE (2004)

    Google Scholar 

  61. Lewis, D.D.: A sequential algorithm for training text classifiers: corrigendum and additional data. In: ACM SIGIR Forum, vol. 29, pp. 13–19. ACM New York (1995)

    Google Scholar 

  62. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Machine Learning Proceedings 1994, pp. 148–156. Elsevier (1994)

    Google Scholar 

  63. Li, Z., Ma, X., Xu, C., Cao, C., Xu, J., Lü, J.: Boosting operational dnn testing efficiency through conditioning 10(1145/3338906), 3338930 (2019)

    Google Scholar 

  64. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  65. Lohr, S.L.: Sampling: design and analysis. CRC press (2021)

    Google Scholar 

  66. Lumley, T., Shaw, P.A., Dai, J.Y.: Connections between survey calibration estimators and semiparametric models for incomplete data. Int. Stat. Rev. 79(2), 200–220 (2011)

    Article  Google Scholar 

  67. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

  68. Matthey, L., Higgins, I., Hassabis, D., Lerchner, A.: dsprites: Disentanglement testing sprites dataset (2017). https://github.com/deepmind/dsprites-dataset/

  69. McConville, K.S., Breidt, F.J., Lee, T.C., Moisen, G.G.: Model-assisted survey regression estimation with the lasso. J. Surv. Statist. Methodol. 5(2), 131–158 (2017)

    Article  Google Scholar 

  70. Miller, B.A., Vila, J., Kirn, M., Zipkin, J.R.: Classifier performance estimation with unbalanced, partially labeled data. In: Torgo, L., Matwin, S., Weiss, G., Moniz, N., Branco, P. (eds.) Proceedings of The International Workshop on Cost-Sensitive Learning. Proceedings of Machine Learning Research, 05 May, vol. 88, pp. 4–16. PMLR (2018)

    Google Scholar 

  71. Miller, J.P., et al.: Accuracy on the line: on the strong correlation between out-of-distribution and in-distribution generalization. In: International Conference on Machine Learning, pp. 7721–7735. PMLR (2021)

    Google Scholar 

  72. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  73. Neyman, J.: On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. In: Breakthroughs in Statistics: Methodology and Distribution, pp. 123–150. Springer (1992). https://doi.org/10.1007/978-1-4612-4380-9_12

  74. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  75. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: 2012 IEEE conference on Computer Vision and Pattern Recognition, pp. 3498–3505. IEEE (2012)

    Google Scholar 

  76. Poms, F., et al.: Low-shot validation: active importance sampling for estimating classifier performance on rare categories. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10705–10714 (October 2021)

    Google Scholar 

  77. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  78. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do imagenet classifiers generalize to imagenet? In: International Conference on Machine Learning, pp. 5389–5400. PMLR (2019)

    Google Scholar 

  79. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)

    Article  Google Scholar 

  80. Roth, A.: Uncertain: Modern topics in uncertainty estimation (2022)

    Google Scholar 

  81. Russakovsky, O., et al.: ImageNet Large Scale Visual Recognition Challenge. Inter. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  82. Särndal, C.E.: The calibration approach in survey theory and practice. Surv. Pract. 33(2), 99–119 (2007)

    Google Scholar 

  83. Särndal, C.E., Swensson, B., Wretman, J.: Model assisted survey sampling. Springer Science & Business Media (2003)

    Google Scholar 

  84. Sawade, C., Landwehr, N., Bickel, S., Scheffer, T.: Active risk estimation. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010. pp. 951-958. Omnipress, Madison, WI, USA (2010)

    Google Scholar 

  85. Sawade, C., Landwehr, N., Scheffer, T.: Active estimation of f-measures. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23. Curran Associates, Inc. (2010)

    Google Scholar 

  86. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for information extraction. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_31

    Chapter  Google Scholar 

  87. Schuhmann, C., et al.: LAION-5b: an open large-scale dataset for training next generation image-text models. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022). https://openreview.net/forum?id=M3Y74vmsMcY

  88. Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  89. Settles, B.: Active learning literature survey (2009)

    Google Scholar 

  90. Siddhant, A., Lipton, Z.C.: Deep bayesian active learning for natural language processing: Results of a large-scale empirical study. arXiv preprint arXiv:1808.05697 (2018)

  91. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  92. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recognition benchmark: a multi-class classification competition. In: The 2011 International Joint Conference on Neural Networks, pp. 1453–1460. IEEE (2011)

    Google Scholar 

  93. Taylor, J., Earnshaw, B., Mabey, B., Victors, M., Yosinski, J.: Rxrx1: an image set for cellular morphological variation across many experimental batches. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  94. Tillé, Y.: Sampling and estimation from finite populations. John Wiley & Sons (2020)

    Google Scholar 

  95. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  96. Wald, Y., Feder, A., Greenfeld, D., Shalit, U.: On calibration and out-of-domain generalization. Adv. Neural. Inf. Process. Syst. 34, 2215–2227 (2021)

    Google Scholar 

  97. Wang, H., Ge, S., Lipton, Z., Xing, E.P.: Learning robust global representations by penalizing local predictive power. Adv. Neural Inform. Process. Syst., 10506–10518 (2019)

    Google Scholar 

  98. Welinder, P., Welling, M., Perona, P.: A lazy man’s approach to benchmarking: Semisupervised classifier evaluation and recalibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2013)

    Google Scholar 

  99. Wenzel, F., et al.: Assaying out-of-distribution generalization in transfer learning. Adv. Neural. Inf. Process. Syst. 35, 7181–7198 (2022)

    Google Scholar 

  100. Wu, C., Sitter, R.R.: A model-calibration approach to using complete auxiliary information from survey data. J. Am. Stat. Assoc. 96(453), 185–193 (2001)

    Article  MathSciNet  Google Scholar 

  101. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (June 2010). https://doi.org/10.1109/CVPR.2010.5539970

  102. Yu, Y., Bates, S., Ma, Y., Jordan, M.: Robust calibration with multi-domain temperature scaling. Adv. Neural. Inf. Process. Syst. 35, 27510–27523 (2022)

    Google Scholar 

  103. Yu, Y., Yang, Z., Wei, A., Ma, Y., Steinhardt, J.: Predicting out-of-distribution error with the projection norm. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning, 17–23 Jul. Proceedings of Machine Learning Research, vol. 162, pp. 25721–25746. PMLR (2022)

    Google Scholar 

  104. Zhai, Xet al.: The visual task adaptation benchmark (2020). https://openreview.net/forum?id=BJena3VtwS

  105. Zrnic, T., Candès, E.J.: Active statistical inference. arXiv preprint arXiv:2403.03208 (2024)

  106. Zrnic, T., Candès, E.J.: Cross-prediction-powered inference. Proc. Nat. Acad. Sci. 121(15), e2322083121 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their encouraging comments and valuable suggestions that have improved our manuscript. We also thank Tijana Zrnic for highlighting the connections between prediction-powered inference and our work, as well as Georgy Noarov for pointing out the link between our results and decompositions for proper scoring rules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Fogliato .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2053 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fogliato, R., Patil, P., Monfort, M., Perona, P. (2025). A Framework for Efficient Model Evaluation Through Stratification, Sampling, and Estimation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15146. Springer, Cham. https://doi.org/10.1007/978-3-031-73223-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73223-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73222-5

  • Online ISBN: 978-3-031-73223-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics