[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Diffusion Model for Simulation Ready Coronary Anatomy with Morpho-Skeletal Control

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Virtual interventions enable the physics-based simulation of device deployment within coronary arteries. This framework allows for counterfactual reasoning by deploying the same device in different arterial anatomies. However, current methods to create such counterfactual arteries face a trade-off between controllability and realism. In this study, we investigate how Latent Diffusion Models (LDMs) can custom synthesize coronary anatomy for virtual intervention studies based on mid-level anatomic constraints such as topological validity, local morphological shape, and global skeletal structure. We also extend diffusion model guidance strategies to the context of morpho-skeletal conditioning and propose a novel guidance method for continuous attributes that adaptively updates the negative guiding condition throughout sampling. Our framework enables the generation and editing of coronary anatomy in a controllable manner, allowing device designers to derive mechanistic insights regarding anatomic variation and simulated device deployment. Our code is available at https://github.com/kkadry/Morphoskel-Diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beetz, M., Banerjee, A., Grau, V.: Generating subpopulation-specific biventricular anatomy models using conditional point cloud variational autoencoders. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 75–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_9

    Chapter  Google Scholar 

  2. Byrne, N., Clough, J.R., Valverde, I., Montana, G., King, A.P.: A persistent homology-based topological loss for CNN-based multiclass segmentation of CMR. IEEE Trans. Med. Imaging 42(1), 3–14 (2022)

    Article  Google Scholar 

  3. Chung, H., Kim, J., Mccann, M.T., Klasky, M.L., Ye, J.C.: Diffusion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687 (2022)

  4. Clough, J.R., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.P.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8766–8778 (2020)

    Article  Google Scholar 

  5. Dassault Systèmes: Abaqus Finite Element Analysis Software. Vélizy-Villacoublay, France, version 2023 edn (2023). https://www.3ds.com

  6. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  7. Dong, P., Bezerra, H.G., Wilson, D.L., Gu, L.: Impact of calcium quantifications on stent expansions. J. Biomech. Eng. 141(2), 021010 (2019)

    Article  Google Scholar 

  8. Doradla, P., et al.: Biomechanical stress profiling of coronary atherosclerosis: identifying a multifactorial metric to evaluate plaque rupture risk. Cardiovasc. Imaging 13(3), 804–816 (2020)

    Google Scholar 

  9. Dou, H., Virtanen, S., Ravikumar, N., Frangi, A.F.: A generative shape compositional framework: towards representative populations of virtual heart chimaeras. arXiv preprint arXiv:2210.01607 (2022)

  10. Gandikota, R., Materzynska, J., Fiotto-Kaufman, J., Bau, D.: Erasing concepts from diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2426–2436 (2023)

    Google Scholar 

  11. Gupta, S., et al.: Learning topological interactions for multi-class medical image segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13689, pp. 701–718. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_40

    Chapter  Google Scholar 

  12. He, Y., et al.: Manifold preserving guided diffusion. arXiv preprint arXiv:2311.16424 (2023)

  13. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  14. Holm, N.R., et al.: OCT or angiography guidance for PCI in complex bifurcation lesions. N. Engl. J. Med. 389(16), 1477–1487 (2023)

    Article  Google Scholar 

  15. Kadry, K., Gupta, S., Nezami, F.R., Edelman, E.R.: Probing the limits and capabilities of diffusion models for the anatomic editing of digital twins. arXiv preprint arXiv:2401.00247 (2023)

  16. Kadry, K., Olender, M.L., Marlevi, D., Edelman, E.R., Nezami, F.R.: A platform for high-fidelity patient-specific structural modelling of atherosclerotic arteries: from intravascular imaging to three-dimensional stress distributions. J. R. Soc. Interface 18(182), 20210436 (2021)

    Article  Google Scholar 

  17. Karanasiou, G.S., et al.: Design and implementation of in silico clinical trial for bioresorbable vascular scaffolds. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2675–2678. IEEE (2020)

    Google Scholar 

  18. Karanasiou, G.S., et al.: An in silico trials platform for the evaluation of stent design effect in post-implantation outcomes. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4970–4973. IEEE (2022)

    Google Scholar 

  19. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-based generative models. arXiv preprint arXiv:2206.00364 (2022)

  20. Madani, A., Bakhaty, A., Kim, J., Mubarak, Y., Mofrad, M.R.: Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis. J. Biomech. Eng. 141(8), 084502 (2019)

    Article  Google Scholar 

  21. Marlevi, D., Edelman, E.R.: Vascular lesion-specific drug delivery systems: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77(19), 2413–2431 (2021)

    Article  Google Scholar 

  22. Mori, H., Torii, S., Kutyna, M., Sakamoto, A., Finn, A.V., Virmani, R.: Coronary artery calcification and its progression: what does it really mean? JACC: Cardiovas. Imaging 11(1), 127–142 (2018)

    Google Scholar 

  23. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  24. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

  25. Otsuka, F., Yasuda, S., Noguchi, T., Ishibashi-Ueda, H.: Pathology of coronary atherosclerosis and thrombosis. Cardiovasc. Diagn. Ther. 6(4), 396 (2016)

    Article  Google Scholar 

  26. Pham, J., Kong, F., James, D.L., Marsden, A.L.: Virtual shape-editing of patient-specific vascular models using regularized kelvinlets. IEEE Trans. Biomed. Eng. (2024)

    Google Scholar 

  27. Pham, J., Wyetzner, S., Pfaller, M.R., Parker, D.W., James, D.L., Marsden, A.L.: svMorph: interactive geometry-editing tools for virtual patient-specific vascular anatomies. J. Biomech. Eng. 145(3), 031001 (2023)

    Article  Google Scholar 

  28. Poletti, G., et al.: Towards a digital twin of coronary stenting: a suitable and validated image-based approach for mimicking patient-specific coronary arteries. Electronics 11(3), 502 (2022)

    Article  Google Scholar 

  29. Qiao, M., et al.: Generative modelling of the ageing heart with cross-sectional imaging and clinical data. In: Camara, O., et al. (eds.) STACOM 2022. LNCS, vol. 13593, pp. 3–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23443-9_1

    Chapter  Google Scholar 

  30. Qiao, M., et al.: Cheart: a conditional spatio-temporal generative model for cardiac anatomy. arXiv preprint arXiv:2301.13098 (2023)

  31. Ralapanawa, U., Sivakanesan, R.: Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: a narrative review. J. Epidemiol. Glob. Health 11(2), 169 (2021)

    Article  Google Scholar 

  32. Sato, M., Bitter, I., Bender, M.A., Kaufman, A.E., Nakajima, M.: Teasar: tree-structure extraction algorithm for accurate and robust skeletons. In: Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, pp. 281–449. IEEE (2000)

    Google Scholar 

  33. Sawaya, F.J., et al.: Contemporary approach to coronary bifurcation lesion treatment. JACC: Cardiovasc. Interv. 9(18), 1861–1878 (2016)

    Google Scholar 

  34. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  35. Silversmith, W., Bae, J.A., Li, P.H., Wilson, A.: Kimimaro: skeletonize densely labeled 3D image segmentations (2021). https://doi.org/10.5281/zenodo.5539913

  36. Sonck, J., et al.: Clinical validation of a virtual planner for coronary interventions based on coronary CT angiography. Cardiovasc. Imaging 15(7), 1242–1255 (2022)

    Google Scholar 

  37. Song, J., et al.: Loss-guided diffusion models for plug-and-play controllable generation (2023)

    Google Scholar 

  38. Stone, P.H., et al.: Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the prediction study. Circulation 126(2), 172–181 (2012)

    Article  Google Scholar 

  39. Straughan, R., Kadry, K., Parikh, S.A., Edelman, E.R., Nezami, F.R.: Fully automated construction of three-dimensional finite element simulations from optical coherence tomography. Comput. Biol. Med. 165, 107341 (2023)

    Article  Google Scholar 

  40. Verhülsdonk, J., et al.: Shape of my heart: cardiac models through learned signed distance functions. arXiv preprint arXiv:2308.16568 (2023)

  41. Virmani, R., Burke, A.P., Farb, A., Kolodgie, F.D.: Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47(8S), C13–C18 (2006)

    Article  Google Scholar 

  42. Wang, W., et al.: Semantic image synthesis via diffusion models. arXiv preprint arXiv:2207.00050 (2022)

  43. Wiesner, D., et al.: Generative modeling of living cells with so (3)-equivariant implicit neural representations. arXiv preprint arXiv:2304.08960 (2023)

  44. Zhao, S., et al.: Patient-specific computational simulation of coronary artery bifurcation stenting. Sci. Rep. 11(1), 16486 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Vivek Gopalakrishnan, Neel Dey, Neerav Karani, Anurag Vaidya, and Ajay Manicka for discussion and comments. Funding for this project was provided by the National Institutes of Health (GM 49039) and Shockwave Medical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Kadry .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5025 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadry, K. et al. (2025). A Diffusion Model for Simulation Ready Coronary Anatomy with Morpho-Skeletal Control. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15136. Springer, Cham. https://doi.org/10.1007/978-3-031-73229-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73229-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73228-7

  • Online ISBN: 978-3-031-73229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics