Abstract
Artificial Intelligence and Deep Learning-based methods show constant promise in addressing time series forecasting challenges. Lake water level forecasting is an essential & significant environmental and societal impact related time series forecasting problem, with climate change connections. Lakes’ diverse hydrological characteristics make high-performance forecasting models to be lake-specific. Thus, comprehensive experiments are necessary to develop accurate deep learning-based forecasting models. We propose an approach for effective and efficient systematic search conduction for high-performance Deep Learning forecasting models. The method is applicable across various time series forecasting challenges. The research was structured around three experimental groups, each focusing on predicting the water levels of Lake Vesijärvi in Lahti, Finland, over periods of 1 day, 3 days, and 7 days, respectively with Long Short-Term Memory and Gated Recurrent Unit. The results are highly promising. All models achieved a Nash-Sutcliffe Efficiency above 0.95 and a Root Mean Squared Error below 0.025. The best-performing model achieved a Nash-Sutcliffe Efficiency above 0.99 and a Root Mean Squared Error below 0.0011. All evaluation metrics were calculated from testing data without signs of overfitting. This research provides insights into Deep Learning-based time series forecasting and a replicable method to conduct such studies effectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ghoreishi, M., Happonen, A.: Key enablers for deploying artificial intelligence for circular economy embracing sustainable product design: three case studies. Presented at the (2020). https://doi.org/10.1063/5.0001339
Usmani, U.A., Happonen, A., Watada, J.: Enhancing medical diagnosis through deep learning and machine learning approaches in image analysis. Presented at the (2024). https://doi.org/10.1007/978-3-031-47718-8_30
Usmani, U.A., Happonen, A., Watada, J.: A review of unsupervised machine learning frameworks for anomaly detection in industrial applications. Presented at the (2022). https://doi.org/10.1007/978-3-031-10464-0_11
Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., Honkapuro, S.: Assessing the performance of deep learning models for multivariate probabilistic energy forecasting. Appl. Energy 285, 116405 (2021). https://doi.org/10.1016/j.apenergy.2020.116405
Happonen, A., Osta, I.L., Potdar, A., Alcaraz, J.L.G.: Financially feasible and sustainable - reviewing academic literature on sustainability related investment studies. Book Publisher Int. (a part of SCIENCEDOMAIN International) (2021). https://doi.org/10.9734/bpi/mono/978-93-5547-032-4
Tereshchenko, E., Happonen, A., Porras, J., Vaithilingam, C.A.: Green growth, waste management, and environmental impact reduction success cases from small and medium enterprises context: a systematic mapping study. IEEE Access. 11, 56900–56920 (2023). https://doi.org/10.1109/ACCESS.2023.3271972
Ozdemir, S., Yaqub, M., Ozkan Yildirim, S.: A systematic literature review on lake water level prediction models. Environ Model Softw. 163, 105684 (2023). https://doi.org/10.1016/j.envsoft.2023.105684
Chen, S., Johnson, F., Drummond, C., Glamore, W.: A new method to improve the accuracy of remotely sensed data for wetland water balance estimates. J. Hydrol.: Reg. Stud. 29, 100689 (2020). https://doi.org/10.1016/j.ejrh.2020.100689
Coops, H., Beklioglu, M., Crisman, T.L.: The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506, 23–27 (2003). https://doi.org/10.1023/B:HYDR.0000008595.14393.77
Voulanas, D., Theodossiou, N., Hatzigiannakis, E.: Assessment of potential hydrological climate change impacts in the Kastoria basin Western Macedonia, Greece using EURO-CORDEX regional climate models. Glob. NEST J. 23(1), 35–46 (2021)
Byun, K., Hamlet, A.F.: Projected changes in future climate over the Midwest and Great Lakes region using downscaled CMIP5 ensembles. Int. J. Climatol. 38(S1), e531–e553 (2018). https://doi.org/10.1002/joc.5388
Yao, Z., Wang, Z., Wu, T., Lu, W.: A hybrid data-driven deep learning prediction framework for lake water level based on fusion of meteorological and hydrological multi-source data. Nat. Resour. Res. 33, 163–190 (2024). https://doi.org/10.1007/s11053-023-10284-3
Adli Zakaria, M.N., et al.: Exploring machine learning algorithms for accurate water level forecasting in Muda river. Malaysia. Heliyon. 9, e17689 (2023). https://doi.org/10.1016/J.HELIYON.2023.E17689
Tan, R., Hu, Y., Wang, Z.: A multi-source data-driven model of lake water level based on variational modal decomposition and external factors with optimized bi-directional long short-term memory neural network. Environ Model Softw. 167, 105766 (2023). https://doi.org/10.1016/j.envsoft.2023.105766
Himanshu Ashar Riddhi Shah Neha Katre, D.M.: Application of Neural Networks in Question Generation. Int. J. Adv. Sci. Technol.. 29:14265–14274 (2020)
Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electr. Markets 31(3), 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2/Published
What is RNN? - Recurrent Neural Networks Explained - AWS, https://aws.amazon.com/what-is/recurrent-neural-network/#:~:text=A%20recurrent%20neural%20network%20(RNN, last accessed 2024/03/14
Colliot, O. (ed.): Machine Learning for Brain Disorders. Springer US, New York, NY (2023)
Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative Study of CNN and RNN for Natural Language Processing. ArXiv, abs/1702.01923
Amalou, I., Mouhni, N., Abdali, A.: Multivariate time series prediction by RNN architectures for energy consumption forecasting. Energy Rep. 8, 1084–1091 (2022). https://doi.org/10.1016/j.egyr.2022.07.139
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Pascanu, R., Mikolov, T., and Bengio, Y: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 (ICML’13). JMLR.org, III–1310–III–1318 (2013)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994). https://doi.org/10.1109/72.279181
Cho, K., Gulcehre, B.V.M.C., Bahdanau, D., Schwenk, F.B.H. and Bengio, Y.: Learning phrase representations using rnn encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics (2014)
Morovati, K., Nakhaei, P., Tian, F., Tudaji, M., Hou, S.: A machine learning framework to predict reverse flow and water level: a case study of Tonle Sap Lake. J. Hydrol. 603, 127168 (2021). https://doi.org/10.1016/j.jhydrol.2021.127168
Gu, H., Xu, Y.P., Ma, D., Xie, J., Liu, L., Bai, Z.: A surrogate model for the Variable Infiltration Capacity model using deep learning artificial neural network. J. Hydrol. 588, 125019 (2020). https://doi.org/10.1016/j.jhydrol.2020.125019
Park, K., Seong, Y., Jung, Y., Youn, I., Choi, C.K.: Development of water level prediction improvement method using multivariate time series data by GRU model. Water Basel. 15, 587 (2023). https://doi.org/10.3390/w15030587
Dtissibe, F.Y., Ari, A.A.A., Abboubakar, H., Njoya, A.N., Mohamadou, A., Thiare, O.: A comparative study of machine learning and deep learning methods for flood forecasting in the Far-North region. Cameroon. Sci Afr. 23, e02053 (2024). https://doi.org/10.1016/J.SCIAF.2023.E02053
Herath, M., Jayathilaka, T., Hoshino, Y., Rathnayake, U.: Deep Machine learning-based water level prediction model for Colombo flood detention area. Appl. Sci. 13, 2194 (2023). https://doi.org/10.3390/app13042194
Atashi, V., Gorji, H.T., Shahabi, S.M., Kardan, R., Lim, Y.H.: Water level forecasting using deep learning time-series analysis: a case study of Red River of the North. Water Basel. 14, 1971 (2022). https://doi.org/10.3390/w14121971
Hrnjica, B., Bonacci, O.: Lake level prediction using feed forward and recurrent neural networks. Water Resour. Manage 33, 2471–2484 (2019). https://doi.org/10.1007/s11269-019-02255-2
Wikipedia, C.: vesistö Suomessa, https://fi.wikipedia.org/wiki/Kymijoen_vesist%C3%B6, (2006)
Järvi-meriwiki: Vesijärvi (14.241.1.001), https://www.jarviwiki.fi/wiki/Vesij%C3%A4rvi_(14.241.1.001), (2022)
Contributors, O.: OpenStreetMap, https://www.openstreetmap.org, (2019)
Abbaspour, M., Javid, A.H., Mirbagheri, S.A., Ahmadi Givi, F., Moghimi, P.: Investigation of lake drying attributed to climate change. Int. J. Environ. Sci. Technol. 9, 257–266 (2012). https://doi.org/10.1007/s13762-012-0031-0
Linkevičienė, R., Petrošius, R., Satkūnas, J., Šimanauskienė, R., Taminskas, J.: Prediction of change in wetland habitats by groundwater: case study in Northeast Lithuania. Estonian J. Earth Sci.. 62, 57 (2013). https://doi.org/10.3176/earth.2013.06
Zappa, M., et al.: A prototype platform for water resources monitoring and early recognition of critical droughts in Switzerland. Proc. Int. Assoc. Hydrol. Sci.. 364, 492–498 (2014). https://doi.org/10.5194/piahs-364-492-2014
Liang, C., Li, H., Lei, M., Qingyun, D.: Dongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory network. Water 10(10), 1389 (2018). https://doi.org/10.3390/w10101389
Barzegar, R., Aalami, M.T., Adamowski, J.: Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J. Hydrol. 598, 126196 (2021). https://doi.org/10.1016/j.jhydrol.2021.126196
Li, G., Liu, Z., Zhang, J., Han, H., Shu, Z.: Bayesian model averaging by combining deep learning models to improve lake water level prediction. Sci. Total. Environ. 906, 167718 (2024). https://doi.org/10.1016/j.scitotenv.2023.167718
Contributors, W.: Pearson correlation coefficient, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient, (2019)
Tsay, R.S.: Analysis of Financial Time Series. Wiley (2010). https://doi.org/10.1002/9780470644560
Petrică, A.C., Stancu, S., Ghițulescu, V.: Stationarity – The central concept in time series analysis. Int. J. Emerg. Res. Manage. Technol. 6(1), 6–16 (2017). https://doi.org/10.23956/ijermt/V6N1/107
Sarker, B., Khan, F.: Nexus between foreign direct investment and economic growth in Bangladesh: an augmented autoregressive distributed lag bounds testing approach. Fin. Innov. 6, 10 (2020). https://doi.org/10.1186/s40854-019-0164-y
Dahiru, T.: P-Value, a true test of statistical significance? A cautionary note. Annals Ibadan Postgrad. Med. 6(1), 21–26 (2008). https://doi.org/10.4314/aipm.v6i1.64038
Kumar, V.: Statistical tests to check stationarity in Time Series, https://www.analyticsvidhya.com/blog/2021/06/statistical-tests-to-check-stationarity-in-time-series-part-1/, (2021)
Moews, B., Herrmann, J.M., Ibikunle, G.: Lagged correlation-based deep learning for directional trend change prediction in financial time series. Expert Syst. Appl. 120, 197–206 (2019). https://doi.org/10.1016/j.eswa.2018.11.027
Mahajan, T., Singh, G., & Bruns, G. (2021). An experimental assessment of treatments for cyclical data. ScholarWorks. http://hdl.handle.net/20.500.12680/th83m446n
Noroozi, Z., Orooji, A., Erfannia, L.: Analyzing the impact of feature selection methods on machine learning algorithms for heart disease prediction. Sci. Rep. 13, 22588 (2023). https://doi.org/10.1038/s41598-023-49962-w
Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization for machine learning models based on bayesian optimization. J. Electr. Sci. Technol. 17(1), 26–40 (2019). https://doi.org/10.11989/JEST.1674-862X.80904120
Kamata, E., Nakadate, M., Uchida, O., Ogawa, Y., Kaneko, T., Kurokawa, Y.: Effects of formaldehyde vapor on the nasal cavity and lungs of F-344 rats. J. Environ. Pathol. Toxicol. Oncol. 15, 1–8 (1996)
Decuyper, M., et al.: An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168, 022022 (2019). https://doi.org/10.1088/1742-6596/1168/2/022022
Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv. 27, 326–327 (1995). https://doi.org/10.1145/212094.212114
Deng, B., Lai, S.H., Jiang, C., Kumar, P., El-Shafie, A., Chin, R.J.: Advanced water level prediction for a large-scale river–lake system using hybrid soft computing approach: a case study in Dongting Lake. China. Earth Sci Inform. 14, 1987–2001 (2021). https://doi.org/10.1007/s12145-021-00665-8
Yağbasan, Ö., Demir, V.: Forecasting of water level fluctuations with periodic fuzzy logic models for two shallow eastern mediterranean lakes. Presented at the (2023). https://doi.org/10.1007/978-3-031-42917-0_24
Liu, Z., Zhou, J., Yang, X., Zhao, Z., Lv, Y.: Research on water resource modeling based on machine learning technologies. Water 16(3), 472 (2024). https://doi.org/10.3390/w16030472
Kumar, V., Azamathulla, H., Sharma, K.V., Mehta, D.J., Maharaj, K.T.: The state of the art in deep learning applications, challenges, and future prospects: a comprehensive review of flood forecasting and management. Sustainability. 15, 10543 (2023). https://doi.org/10.3390/su151310543
Kulshrestha, A., Krishnaswamy, V., Sharma, M.: Bayesian BILSTM approach for tourism demand forecasting. Ann. Tour. Res. 83, 102925 (2020). https://doi.org/10.1016/j.annals.2020.102925
Murugesan, R., Mishra, E., Krishnan, A.H.: Deep Learning Based Models: Basic LSTM, Bi LSTM, Stacked LSTM, CNN LSTM and Conv LSTM to Forecast Agricultural Commodities Prices. (2021). https://doi.org/10.21203/rs.3.rs-740568/v1
Finnish, E.I. (SYKE): www.ymparisto.fi - Water level in Häme, https://wwwi3.ymparisto.fi/i3/tilanne/ENG/waterlevel/HAM.htm
(FMI), F.M.I.: Download observations, https://en.ilmatieteenlaitos.fi/download-observations
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885–900 (2007). https://doi.org/10.13031/2013.23153
Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci Model Dev. 7, 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014
Knoben, W.J.M., Freer, J.E., Woods, R.A.: Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 23, 4323–4331 (2019). https://doi.org/10.5194/hess-23-4323-2019
Srivastava, N., Hinton, G., Krizhevsky, A., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Usmani, U.A., Happonen, A., Watada, J.: Secure Integration of IoT-Enabled Sensors and Technologies: Engineering Applications for Humanitarian Impact. In: 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). pp. 1–10. IEEE (2023). https://doi.org/10.1109/HORA58378.2023.10156740
Mattioli, J., Perico, P., Robic, P.-O.: Artificial Intelligence based Asset Management. In: 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). pp. 151–156. IEEE (2020). https://doi.org/10.1109/SoSE50414.2020.9130505
Xiang, X., Li, Q., Khan, S., Khalaf, O.I.: Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ. Impact Assess. Rev. 86, 106515 (2021). https://doi.org/10.1016/j.eiar.2020.106515
Ghoreishi, M., Happonen, A.: New promises AI brings into circular economy accelerated product design: a review on supporting literature. E3S Web of Conferences. 158, 06002 (2020). https://doi.org/10.1051/e3sconf/202015806002
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017). https://doi.org/10.1038/nature23474
Palacin, V., Gilbert, S., Orchard, S., Eaton, A., Ferrario, M.A., Happonen, A.: Drivers of participation in digital citizen science: case studies on Järviwiki and Safecast. Citiz Sci. 5, 22 (2020). https://doi.org/10.5334/cstp.290
Palacin, V., Ginnane, S., Ferrario, M.A., Happonen, A., Wolff, A., Piutunen, S., Kupiainen, N.: SENSEI: Harnessing Community Wisdom for Local Environmental Monitoring in Finland. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. pp. 1–8. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290607.3299047
Santti, U., Happonen, A., Auvinen, H.: Digitalization boosted recycling: gamification as an inspiration for young adults to do enhanced waste sorting. Presented at the (2020). https://doi.org/10.1063/5.0001547
Eskelinen, T., Räsänen, T., Santti, U., Happonen, A., Kajanus, M.: Designing a business model for environmental monitoring services using fast MCDS innovation support tools. Technol. Innov. Manage. Rev. 7, 36–46 (2017). https://doi.org/10.22215/timreview/1119
Arashpour, M.: AI explainability framework for environmental management research. J. Environ. Manage. 342, 118149 (2023). https://doi.org/10.1016/j.jenvman.2023.118149
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Du, Y., Fan, J., Happonen, A., Paulraj, D., Tuape, M. (2024). Lake Water Level Forecasting Using LSTM and GRU: A Deep Learning Approach. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3. FTC 2024. Lecture Notes in Networks and Systems, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-031-73125-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-73125-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73124-2
Online ISBN: 978-3-031-73125-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)