[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lake Water Level Forecasting Using LSTM and GRU: A Deep Learning Approach

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3 (FTC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1156))

Included in the following conference series:

  • 262 Accesses

Abstract

Artificial Intelligence and Deep Learning-based methods show constant promise in addressing time series forecasting challenges. Lake water level forecasting is an essential & significant environmental and societal impact related time series forecasting problem, with climate change connections. Lakes’ diverse hydrological characteristics make high-performance forecasting models to be lake-specific. Thus, comprehensive experiments are necessary to develop accurate deep learning-based forecasting models. We propose an approach for effective and efficient systematic search conduction for high-performance Deep Learning forecasting models. The method is applicable across various time series forecasting challenges. The research was structured around three experimental groups, each focusing on predicting the water levels of Lake Vesijärvi in Lahti, Finland, over periods of 1 day, 3 days, and 7 days, respectively with Long Short-Term Memory and Gated Recurrent Unit. The results are highly promising. All models achieved a Nash-Sutcliffe Efficiency above 0.95 and a Root Mean Squared Error below 0.025. The best-performing model achieved a Nash-Sutcliffe Efficiency above 0.99 and a Root Mean Squared Error below 0.0011. All evaluation metrics were calculated from testing data without signs of overfitting. This research provides insights into Deep Learning-based time series forecasting and a replicable method to conduct such studies effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghoreishi, M., Happonen, A.: Key enablers for deploying artificial intelligence for circular economy embracing sustainable product design: three case studies. Presented at the (2020). https://doi.org/10.1063/5.0001339

    Article  MATH  Google Scholar 

  2. Usmani, U.A., Happonen, A., Watada, J.: Enhancing medical diagnosis through deep learning and machine learning approaches in image analysis. Presented at the (2024). https://doi.org/10.1007/978-3-031-47718-8_30

    Article  MATH  Google Scholar 

  3. Usmani, U.A., Happonen, A., Watada, J.: A review of unsupervised machine learning frameworks for anomaly detection in industrial applications. Presented at the (2022). https://doi.org/10.1007/978-3-031-10464-0_11

    Article  MATH  Google Scholar 

  4. Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., Honkapuro, S.: Assessing the performance of deep learning models for multivariate probabilistic energy forecasting. Appl. Energy 285, 116405 (2021). https://doi.org/10.1016/j.apenergy.2020.116405

    Article  Google Scholar 

  5. Happonen, A., Osta, I.L., Potdar, A., Alcaraz, J.L.G.: Financially feasible and sustainable - reviewing academic literature on sustainability related investment studies. Book Publisher Int. (a part of SCIENCEDOMAIN International) (2021). https://doi.org/10.9734/bpi/mono/978-93-5547-032-4

    Article  Google Scholar 

  6. Tereshchenko, E., Happonen, A., Porras, J., Vaithilingam, C.A.: Green growth, waste management, and environmental impact reduction success cases from small and medium enterprises context: a systematic mapping study. IEEE Access. 11, 56900–56920 (2023). https://doi.org/10.1109/ACCESS.2023.3271972

    Article  Google Scholar 

  7. Ozdemir, S., Yaqub, M., Ozkan Yildirim, S.: A systematic literature review on lake water level prediction models. Environ Model Softw. 163, 105684 (2023). https://doi.org/10.1016/j.envsoft.2023.105684

    Article  MATH  Google Scholar 

  8. Chen, S., Johnson, F., Drummond, C., Glamore, W.: A new method to improve the accuracy of remotely sensed data for wetland water balance estimates. J. Hydrol.: Reg. Stud. 29, 100689 (2020). https://doi.org/10.1016/j.ejrh.2020.100689

    Article  Google Scholar 

  9. Coops, H., Beklioglu, M., Crisman, T.L.: The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506, 23–27 (2003). https://doi.org/10.1023/B:HYDR.0000008595.14393.77

    Article  Google Scholar 

  10. Voulanas, D., Theodossiou, N., Hatzigiannakis, E.: Assessment of potential hydrological climate change impacts in the Kastoria basin Western Macedonia, Greece using EURO-CORDEX regional climate models. Glob. NEST J. 23(1), 35–46 (2021)

    Google Scholar 

  11. Byun, K., Hamlet, A.F.: Projected changes in future climate over the Midwest and Great Lakes region using downscaled CMIP5 ensembles. Int. J. Climatol. 38(S1), e531–e553 (2018). https://doi.org/10.1002/joc.5388

    Article  Google Scholar 

  12. Yao, Z., Wang, Z., Wu, T., Lu, W.: A hybrid data-driven deep learning prediction framework for lake water level based on fusion of meteorological and hydrological multi-source data. Nat. Resour. Res. 33, 163–190 (2024). https://doi.org/10.1007/s11053-023-10284-3

    Article  MATH  Google Scholar 

  13. Adli Zakaria, M.N., et al.: Exploring machine learning algorithms for accurate water level forecasting in Muda river. Malaysia. Heliyon. 9, e17689 (2023). https://doi.org/10.1016/J.HELIYON.2023.E17689

    Article  Google Scholar 

  14. Tan, R., Hu, Y., Wang, Z.: A multi-source data-driven model of lake water level based on variational modal decomposition and external factors with optimized bi-directional long short-term memory neural network. Environ Model Softw. 167, 105766 (2023). https://doi.org/10.1016/j.envsoft.2023.105766

    Article  MATH  Google Scholar 

  15. Himanshu Ashar Riddhi Shah Neha Katre, D.M.: Application of Neural Networks in Question Generation. Int. J. Adv. Sci. Technol.. 29:14265–14274 (2020)

    Google Scholar 

  16. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Electr. Markets 31(3), 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2/Published

    Article  Google Scholar 

  17. What is RNN? - Recurrent Neural Networks Explained - AWS, https://aws.amazon.com/what-is/recurrent-neural-network/#:~:text=A%20recurrent%20neural%20network%20(RNN, last accessed 2024/03/14

  18. Colliot, O. (ed.): Machine Learning for Brain Disorders. Springer US, New York, NY (2023)

    MATH  Google Scholar 

  19. Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative Study of CNN and RNN for Natural Language Processing. ArXiv, abs/1702.01923

    Google Scholar 

  20. Amalou, I., Mouhni, N., Abdali, A.: Multivariate time series prediction by RNN architectures for energy consumption forecasting. Energy Rep. 8, 1084–1091 (2022). https://doi.org/10.1016/j.egyr.2022.07.139

    Article  Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  MATH  Google Scholar 

  22. Pascanu, R., Mikolov, T., and Bengio, Y: On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 (ICML’13). JMLR.org, III–1310–III–1318 (2013)

    Google Scholar 

  23. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994). https://doi.org/10.1109/72.279181

    Article  MATH  Google Scholar 

  24. Cho, K., Gulcehre, B.V.M.C., Bahdanau, D., Schwenk, F.B.H. and Bengio, Y.: Learning phrase representations using rnn encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics (2014)

    Google Scholar 

  25. Morovati, K., Nakhaei, P., Tian, F., Tudaji, M., Hou, S.: A machine learning framework to predict reverse flow and water level: a case study of Tonle Sap Lake. J. Hydrol. 603, 127168 (2021). https://doi.org/10.1016/j.jhydrol.2021.127168

    Article  Google Scholar 

  26. Gu, H., Xu, Y.P., Ma, D., Xie, J., Liu, L., Bai, Z.: A surrogate model for the Variable Infiltration Capacity model using deep learning artificial neural network. J. Hydrol. 588, 125019 (2020). https://doi.org/10.1016/j.jhydrol.2020.125019

    Article  MATH  Google Scholar 

  27. Park, K., Seong, Y., Jung, Y., Youn, I., Choi, C.K.: Development of water level prediction improvement method using multivariate time series data by GRU model. Water Basel. 15, 587 (2023). https://doi.org/10.3390/w15030587

    Article  MATH  Google Scholar 

  28. Dtissibe, F.Y., Ari, A.A.A., Abboubakar, H., Njoya, A.N., Mohamadou, A., Thiare, O.: A comparative study of machine learning and deep learning methods for flood forecasting in the Far-North region. Cameroon. Sci Afr. 23, e02053 (2024). https://doi.org/10.1016/J.SCIAF.2023.E02053

    Article  Google Scholar 

  29. Herath, M., Jayathilaka, T., Hoshino, Y., Rathnayake, U.: Deep Machine learning-based water level prediction model for Colombo flood detention area. Appl. Sci. 13, 2194 (2023). https://doi.org/10.3390/app13042194

    Article  Google Scholar 

  30. Atashi, V., Gorji, H.T., Shahabi, S.M., Kardan, R., Lim, Y.H.: Water level forecasting using deep learning time-series analysis: a case study of Red River of the North. Water Basel. 14, 1971 (2022). https://doi.org/10.3390/w14121971

    Article  Google Scholar 

  31. Hrnjica, B., Bonacci, O.: Lake level prediction using feed forward and recurrent neural networks. Water Resour. Manage 33, 2471–2484 (2019). https://doi.org/10.1007/s11269-019-02255-2

    Article  MATH  Google Scholar 

  32. Wikipedia, C.: vesistö Suomessa, https://fi.wikipedia.org/wiki/Kymijoen_vesist%C3%B6, (2006)

  33. Järvi-meriwiki: Vesijärvi (14.241.1.001), https://www.jarviwiki.fi/wiki/Vesij%C3%A4rvi_(14.241.1.001), (2022)

  34. Contributors, O.: OpenStreetMap, https://www.openstreetmap.org, (2019)

  35. Abbaspour, M., Javid, A.H., Mirbagheri, S.A., Ahmadi Givi, F., Moghimi, P.: Investigation of lake drying attributed to climate change. Int. J. Environ. Sci. Technol. 9, 257–266 (2012). https://doi.org/10.1007/s13762-012-0031-0

    Article  MATH  Google Scholar 

  36. Linkevičienė, R., Petrošius, R., Satkūnas, J., Šimanauskienė, R., Taminskas, J.: Prediction of change in wetland habitats by groundwater: case study in Northeast Lithuania. Estonian J. Earth Sci.. 62, 57 (2013). https://doi.org/10.3176/earth.2013.06

    Article  Google Scholar 

  37. Zappa, M., et al.: A prototype platform for water resources monitoring and early recognition of critical droughts in Switzerland. Proc. Int. Assoc. Hydrol. Sci.. 364, 492–498 (2014). https://doi.org/10.5194/piahs-364-492-2014

    Article  MATH  Google Scholar 

  38. Liang, C., Li, H., Lei, M., Qingyun, D.: Dongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory network. Water 10(10), 1389 (2018). https://doi.org/10.3390/w10101389

    Article  MATH  Google Scholar 

  39. Barzegar, R., Aalami, M.T., Adamowski, J.: Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J. Hydrol. 598, 126196 (2021). https://doi.org/10.1016/j.jhydrol.2021.126196

    Article  MATH  Google Scholar 

  40. Li, G., Liu, Z., Zhang, J., Han, H., Shu, Z.: Bayesian model averaging by combining deep learning models to improve lake water level prediction. Sci. Total. Environ. 906, 167718 (2024). https://doi.org/10.1016/j.scitotenv.2023.167718

    Article  Google Scholar 

  41. Contributors, W.: Pearson correlation coefficient, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient, (2019)

  42. Tsay, R.S.: Analysis of Financial Time Series. Wiley (2010). https://doi.org/10.1002/9780470644560

    Article  MATH  Google Scholar 

  43. Petrică, A.C., Stancu, S., Ghițulescu, V.: Stationarity – The central concept in time series analysis. Int. J. Emerg. Res. Manage. Technol. 6(1), 6–16 (2017). https://doi.org/10.23956/ijermt/V6N1/107

    Article  MATH  Google Scholar 

  44. Sarker, B., Khan, F.: Nexus between foreign direct investment and economic growth in Bangladesh: an augmented autoregressive distributed lag bounds testing approach. Fin. Innov. 6, 10 (2020). https://doi.org/10.1186/s40854-019-0164-y

    Article  MATH  Google Scholar 

  45. Dahiru, T.: P-Value, a true test of statistical significance? A cautionary note. Annals Ibadan Postgrad. Med. 6(1), 21–26 (2008). https://doi.org/10.4314/aipm.v6i1.64038

    Article  Google Scholar 

  46. Kumar, V.: Statistical tests to check stationarity in Time Series, https://www.analyticsvidhya.com/blog/2021/06/statistical-tests-to-check-stationarity-in-time-series-part-1/, (2021)

  47. Moews, B., Herrmann, J.M., Ibikunle, G.: Lagged correlation-based deep learning for directional trend change prediction in financial time series. Expert Syst. Appl. 120, 197–206 (2019). https://doi.org/10.1016/j.eswa.2018.11.027

    Article  MATH  Google Scholar 

  48. Mahajan, T., Singh, G., & Bruns, G. (2021). An experimental assessment of treatments for cyclical data. ScholarWorks. http://hdl.handle.net/20.500.12680/th83m446n

  49. Noroozi, Z., Orooji, A., Erfannia, L.: Analyzing the impact of feature selection methods on machine learning algorithms for heart disease prediction. Sci. Rep. 13, 22588 (2023). https://doi.org/10.1038/s41598-023-49962-w

    Article  Google Scholar 

  50. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization for machine learning models based on bayesian optimization. J. Electr. Sci. Technol. 17(1), 26–40 (2019). https://doi.org/10.11989/JEST.1674-862X.80904120

    Article  MATH  Google Scholar 

  51. Kamata, E., Nakadate, M., Uchida, O., Ogawa, Y., Kaneko, T., Kurokawa, Y.: Effects of formaldehyde vapor on the nasal cavity and lungs of F-344 rats. J. Environ. Pathol. Toxicol. Oncol. 15, 1–8 (1996)

    Google Scholar 

  52. Decuyper, M., et al.: An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168, 022022 (2019). https://doi.org/10.1088/1742-6596/1168/2/022022

    Article  MATH  Google Scholar 

  53. Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv. 27, 326–327 (1995). https://doi.org/10.1145/212094.212114

    Article  MATH  Google Scholar 

  54. Deng, B., Lai, S.H., Jiang, C., Kumar, P., El-Shafie, A., Chin, R.J.: Advanced water level prediction for a large-scale river–lake system using hybrid soft computing approach: a case study in Dongting Lake. China. Earth Sci Inform. 14, 1987–2001 (2021). https://doi.org/10.1007/s12145-021-00665-8

    Article  Google Scholar 

  55. Yağbasan, Ö., Demir, V.: Forecasting of water level fluctuations with periodic fuzzy logic models for two shallow eastern mediterranean lakes. Presented at the (2023). https://doi.org/10.1007/978-3-031-42917-0_24

    Article  MATH  Google Scholar 

  56. Liu, Z., Zhou, J., Yang, X., Zhao, Z., Lv, Y.: Research on water resource modeling based on machine learning technologies. Water 16(3), 472 (2024). https://doi.org/10.3390/w16030472

    Article  MATH  Google Scholar 

  57. Kumar, V., Azamathulla, H., Sharma, K.V., Mehta, D.J., Maharaj, K.T.: The state of the art in deep learning applications, challenges, and future prospects: a comprehensive review of flood forecasting and management. Sustainability. 15, 10543 (2023). https://doi.org/10.3390/su151310543

    Article  Google Scholar 

  58. Kulshrestha, A., Krishnaswamy, V., Sharma, M.: Bayesian BILSTM approach for tourism demand forecasting. Ann. Tour. Res. 83, 102925 (2020). https://doi.org/10.1016/j.annals.2020.102925

    Article  Google Scholar 

  59. Murugesan, R., Mishra, E., Krishnan, A.H.: Deep Learning Based Models: Basic LSTM, Bi LSTM, Stacked LSTM, CNN LSTM and Conv LSTM to Forecast Agricultural Commodities Prices. (2021). https://doi.org/10.21203/rs.3.rs-740568/v1

  60. Finnish, E.I. (SYKE): www.ymparisto.fi - Water level in Häme, https://wwwi3.ymparisto.fi/i3/tilanne/ENG/waterlevel/HAM.htm

  61. (FMI), F.M.I.: Download observations, https://en.ilmatieteenlaitos.fi/download-observations

  62. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885–900 (2007). https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  63. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci Model Dev. 7, 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  64. Knoben, W.J.M., Freer, J.E., Woods, R.A.: Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 23, 4323–4331 (2019). https://doi.org/10.5194/hess-23-4323-2019

    Article  MATH  Google Scholar 

  65. Srivastava, N., Hinton, G., Krizhevsky, A., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Usmani, U.A., Happonen, A., Watada, J.: Secure Integration of IoT-Enabled Sensors and Technologies: Engineering Applications for Humanitarian Impact. In: 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). pp. 1–10. IEEE (2023). https://doi.org/10.1109/HORA58378.2023.10156740

  67. Mattioli, J., Perico, P., Robic, P.-O.: Artificial Intelligence based Asset Management. In: 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE). pp. 151–156. IEEE (2020). https://doi.org/10.1109/SoSE50414.2020.9130505

  68. Xiang, X., Li, Q., Khan, S., Khalaf, O.I.: Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ. Impact Assess. Rev. 86, 106515 (2021). https://doi.org/10.1016/j.eiar.2020.106515

    Article  Google Scholar 

  69. Ghoreishi, M., Happonen, A.: New promises AI brings into circular economy accelerated product design: a review on supporting literature. E3S Web of Conferences. 158, 06002 (2020). https://doi.org/10.1051/e3sconf/202015806002

  70. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  MATH  Google Scholar 

  71. Palacin, V., Gilbert, S., Orchard, S., Eaton, A., Ferrario, M.A., Happonen, A.: Drivers of participation in digital citizen science: case studies on Järviwiki and Safecast. Citiz Sci. 5, 22 (2020). https://doi.org/10.5334/cstp.290

    Article  Google Scholar 

  72. Palacin, V., Ginnane, S., Ferrario, M.A., Happonen, A., Wolff, A., Piutunen, S., Kupiainen, N.: SENSEI: Harnessing Community Wisdom for Local Environmental Monitoring in Finland. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. pp. 1–8. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290607.3299047

  73. Santti, U., Happonen, A., Auvinen, H.: Digitalization boosted recycling: gamification as an inspiration for young adults to do enhanced waste sorting. Presented at the (2020). https://doi.org/10.1063/5.0001547

    Article  Google Scholar 

  74. Eskelinen, T., Räsänen, T., Santti, U., Happonen, A., Kajanus, M.: Designing a business model for environmental monitoring services using fast MCDS innovation support tools. Technol. Innov. Manage. Rev. 7, 36–46 (2017). https://doi.org/10.22215/timreview/1119

    Article  MATH  Google Scholar 

  75. Arashpour, M.: AI explainability framework for environmental management research. J. Environ. Manage. 342, 118149 (2023). https://doi.org/10.1016/j.jenvman.2023.118149

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Happonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Y., Fan, J., Happonen, A., Paulraj, D., Tuape, M. (2024). Lake Water Level Forecasting Using LSTM and GRU: A Deep Learning Approach. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3. FTC 2024. Lecture Notes in Networks and Systems, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-031-73125-9_12

Download citation

Publish with us

Policies and ethics