[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Curved Diffusion: A Generative Model with Optical Geometry Control

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

State-of-the-art diffusion models can generate highly realistic images based on various conditioning like text, segmentation, and depth. However, an essential aspect often overlooked is the specific camera geometry used during image capture. The influence of different optical systems on the final scene appearance is frequently overlooked. This study introduces a framework that intimately integrates a text-to-image diffusion model with the particular lens geometry used in image rendering. Our method is based on a per-pixel coordinate conditioning method, enabling the control over the rendering geometry. Notably, we demonstrate the manipulation of curvature properties, achieving diverse visual effects, such as fish-eye, panoramic views, and spherical texturing using a single diffusion model.

M. Arar and D. Cohen-Or—Performed this work while working at Google.

S. Fruchter and D. Cohen-Or—Equal advising contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-Tal, O., Yariv, L., Lipman, Y., Dekel, T.: Multidiffusion: fusing diffusion paths for controlled image generation. arXiv preprint arXiv:2302.08113 (2023)

  2. Brown, D.: Decentering distortion of lenses. Photogram. Eng. 32(3), 444–462 (1996)

    Google Scholar 

  3. Chai, L., Gharbi, M., Shechtman, E., Isola, P., Zhang, R.: Any-resolution training for high-resolution image synthesis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13676, pp. 170–188. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_10

    Chapter  Google Scholar 

  4. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  5. Gao, J., et al.: GET3D: a generative model of high quality 3D textured shapes learned from images. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  7. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  8. Jin, Z., Shen, X., Li, B., Xue, X.: Training-free diffusion model adaptation for variable-sized text-to-image synthesis. arXiv preprint arXiv:2306.08645 (2023)

  9. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, New York (2012)

    Book  Google Scholar 

  10. OOCV Library: Camera calibration and 3D reconstruction (2023). https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html. Accessed 14 Nov 2023

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Metzer, G., Richardson, E., Patashnik, O., Giryes, R., Cohen-Or, D.: Latent-NeRF for shape-guided generation of 3D shapes and textures. arXiv preprint arXiv:2211.07600 (2022)

  13. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2Mesh: text-driven neural stylization for meshes. arXiv preprint arXiv:2112.03221 (2021)

  14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  15. Mou, C., et al.: T2I-adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453 (2023)

  16. Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)

  17. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: text-to-3D using 2D diffusion. arXiv preprint arXiv:2209.14988 (2022)

  18. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  19. Richardson, E., Metzer, G., Alaluf, Y., Giryes, R., Cohen-Or, D.: Texture: text-guided texturing of 3D shapes. In: ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH 2023. Association for Computing Machinery, New York (2023). https://doi.org/10.1145/3588432.3591503

  20. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  21. Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)

    Google Scholar 

  22. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advances in Neural Information Processing Systems, vol. 35, pp. 36479–36494 (2022)

    Google Scholar 

  23. Tang, S., Zhang, F., Chen, J., Wang, P., Yasutaka, F.: MVDiffusion: enabling holistic multi-view image generation with correspondence-aware diffusion. arXiv preprint 2307.01097 (2023)

    Google Scholar 

  24. Voynov, A., Aberman, K., Cohen-Or, D.: Sketch-guided text-to-image diffusion models. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)

    Google Scholar 

  25. Yang, S., Lin, C., Liao, K., Zhang, C., Zhao, Y.: Progressively complementary network for fisheye image rectification using appearance flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6348–6357 (2021)

    Google Scholar 

  26. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: IEEE International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  27. Zhang, Q., Song, J., Huang, X., Chen, Y., Liu, M.Y.: DiffCollage: parallel generation of large content with diffusion models. In: CVPR (2023)

    Google Scholar 

Download references

Acknowledgements

We thank Chu Qinghao, Yael Vinker, Yael Pritch, and Yonatan Shafir for their valuable inputs that helped improve this work. We also express our gratitude to the anonymous reviewers who provided valuable feedback that helped us improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Voynov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7533 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voynov, A., Hertz, A., Arar, M., Fruchter, S., Cohen-Or, D. (2024). Curved Diffusion: A Generative Model with Optical Geometry Control. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15135. Springer, Cham. https://doi.org/10.1007/978-3-031-72980-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72980-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72979-9

  • Online ISBN: 978-3-031-72980-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics