[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

EgoBody3M: Egocentric Body Tracking on a VR Headset using a Diverse Dataset

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15137))

Included in the following conference series:

  • 97 Accesses

Abstract

Accurate tracking of a user’s body pose while wearing a virtual reality (VR), augmented reality (AR) or mixed reality (MR) headset is a prerequisite for authentic self-expression, natural social presence, and intuitive user interfaces. Existing body tracking approaches on VR/AR devices are either under-constrained, e.g., attempting to infer full body pose from only headset and controller pose, or require impractical hardware setups that place cameras far from a user’s face to improve body visibility. In this paper, we present the first controller-less egocentric body tracking solution that runs on an actual VR device using the same cameras that are used for SLAM tracking. We propose a novel egocentric tracking architecture that models the temporal history of body motion using multi-view latent features. Furthermore, we release the first large-scale real-image dataset for egocentric body tracking, EgoBody3M, with a realistic VR headset configuration and diverse subjects and motions. Benchmarks on the dataset shows that our approach outperforms other state-of-the-art methods in both accuracy and smoothness of the resulting motion. We perform ablation studies on our model choices and demonstrate the method running in realtime on a VR headset. Our dataset with more than 30 h of recordings and 3 million frames will be made publicly available.

A. Zhao and C. Tang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apple Vision Pro. https://www.apple.com/apple-vision-pro/. Accessed 17 Nov 2023

  2. Meta Quest 3. https://www.meta.com/ie/quest/quest-3/. Accessed 17 Nov 2023

  3. Meta Quest Pro. https://www.meta.com/quest/quest-pro/. Accessed 17 Nov 2023

  4. Microsoft Azure Kinect. https://azure.microsoft.com/en-us/products/kinect-dk. Accessed 17 Nov 2023

  5. Pico 4. https://www.picoxr.com/global/products/pico4. Accessed 17 Nov 2023

  6. Akada, H., Wang, J., Shimada, S., Takahashi, M., Theobalt, C., Golyanik, V.: UnrealEgo: a new dataset for robust egocentric 3D human motion capture. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13666, pp. 1–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_1

    Chapter  Google Scholar 

  7. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)

    Article  Google Scholar 

  8. Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., Grundmann, M.: BlazePose: on-device real-time body pose tracking. In: CVPR Workshop on Computer Vision for Augmented and Virtual Reality (2020)

    Google Scholar 

  9. Cha, Y.W., et al.: Towards fully mobile 3D face, body, and environment capture using only head-worn cameras. IEEE Trans. Vis. Comput. Graph. 24(11), 2993–3004 (2018). https://doi.org/10.1109/TVCG.2018.2868527

    Article  Google Scholar 

  10. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Dittadi, A., Dziadzio, S., Cosker, D., Lundell, B., Cashman, T., Shotton, J.: Full-body motion from a single head-mounted device: generating SMPL poses from partial observations. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  14. Hähnel, D., Thrun, S., Burgard, W.: An extension of the ICP algorithm for modeling nonrigid objects with mobile robots. In: Proceedings of IJCAI (2003)

    Google Scholar 

  15. Han, S., et al.: UmeTrack: unified multi-view end-to-end hand tracking for VR. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)

    Google Scholar 

  16. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1994)

    Google Scholar 

  17. Hu, W., Zhang, C., Zhan, F., Zhang, L., Wong, T.T.: Conditional directed graph convolution for 3D human pose estimation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 602–611 (2021)

    Google Scholar 

  18. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of human pose. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7718–7727 (2019)

    Google Scholar 

  19. Ito, K., Tada, M., Ujike, H., Hyodo, K.: Effects of the weight and balance of head-mounted displays on physical load. Appl. Sci. 11(15), 6802 (2021)

    Article  Google Scholar 

  20. Jeon, H.G., Lee, J.Y., Im, S., Ha, H., Kweon, I.S.: Stereo matching with color and monochrome cameras in low-light conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4086–4094 (2016)

    Google Scholar 

  21. Jiang, H., Ithapu, V.K.: Egocentric pose estimation from human vision span. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10986–10994. IEEE (2021)

    Google Scholar 

  22. Khirodkar, R., Bansal, A., Ma, L., Newcombe, R., Vo, M., Kitani, K.: EgoHumans: an egocentric 3D multi-human benchmark. arXiv preprint arXiv:2305.16487 (2023)

  23. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  24. Li, J., Liu, C., Wu, J.: Ego-body pose estimation via ego-head pose estimation. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society (2023)

    Google Scholar 

  25. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014, Part II. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

    Chapter  Google Scholar 

  26. Pantone LLC: Pantone SkinTone Guide (2012)

    Google Scholar 

  27. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  28. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VIII. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  29. Parger, M., Mueller, J.H., Schmalstieg, D., Steinberger, M.: Human upper-body inverse kinematics for increased embodiment in consumer-grade virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST 2018 (2018)

    Google Scholar 

  30. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 (2017)

    Google Scholar 

  31. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  32. Remelli, E., Han, S., Honari, S., Fua, P., Wang, R.: Lightweight multi-view 3D pose estimation through camera-disentangled representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6040–6049 (2020)

    Google Scholar 

  33. Rhodin, H., et al.: EgoCap: egocentric marker-less motion capture with two fisheye cameras. ACM Trans. Graph. 35(6), 1–11 (2016)

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  36. Sak, H., Senior, A., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128 (2014)

  37. Smith, L., Topin, N.: Super-convergence: very fast training of neural networks using large learning rates, p. 36 (2019). https://doi.org/10.1117/12.2520589

  38. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  39. Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3D human pose with deep neural networks. arXiv preprint arXiv:1605.05180 (2016)

  40. Tekin, B., Rozantsev, A., Lepetit, V., Fua, P.V.: Direct prediction of 3D body poses from motion compensated sequences. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  41. Tome, D., et al.: SelfPose: 3D egocentric pose estimation from a headset mounted camera. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 6794–6806 (2020). https://doi.org/10.1109/TPAMI.2020.3029700

    Article  Google Scholar 

  42. Tome, D., Peluse, P., Agapito, L., Badino, H.: xR-EgoPose: egocentric 3D human pose from an HMD camera. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7728–7738 (2019)

    Google Scholar 

  43. Wang, J., Liu, L., Xu, W., Sarkar, K., Luvizon, D., Theobalt, C.: Estimating egocentric 3D human pose in the wild with external weak supervision. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society (2022)

    Google Scholar 

  44. Wang, J., Luvizon, D., Xu, W., Liu, L., Sarkar, K., Theobalt, C.: Scene-aware egocentric 3D human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  45. Wang, J., Yan, S., Xiong, Y., Lin, D.: Motion guided 3D pose estimation from videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 764–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_45

    Chapter  Google Scholar 

  46. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  47. Winkler, A., Won, J., Ye, Y.: QuestSim: human motion tracking from sparse sensors with simulated avatars. In: SIGGRAPH Asia 2022 Conference Papers (2022)

    Google Scholar 

  48. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 466–481 (2018)

    Google Scholar 

  49. Xu, W., et al.: Mo\(^{2}\)Cap\(^{2}\): real-time mobile 3D motion capture with a cap-mounted fisheye camera. IEEE Trans. Vis. Comput. Graph. 25(5), 2093–2101 (2019)

    Article  Google Scholar 

  50. Zhang, J., Tu, Z., Yang, J., Chen, Y., Yuan, J.: MixSTE: Seq2seq mixed spatio-temporal encoder for 3D human pose estimation in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13232–13242 (2022)

    Google Scholar 

  51. Zhang, Y., You, S., Gevers, T.: Automatic calibration of the fisheye camera for egocentric 3D human pose estimation from a single image. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1772–1781 (2021)

    Google Scholar 

  52. Zhao, D., Wei, Z., Mahmud, J., Frahm, J.M.: EgoGlass: egocentric-view human pose estimation from an eyeglass frame. In: 2021 International Conference on 3D Vision (3DV), pp. 32–41 (2021)

    Google Scholar 

  53. Zhu, W., Ma, X., Liu, Z., Liu, L., Wu, W., Wang, Y.: MotionBERT: a unified perspective on learning human motion representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15085–15099 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the anonymous reviewers for their comments and corrections; Xuetong Sun and Fan Bu for their work on productizing body tracking; Steve Olsen, Kevin Harris, Steve Miller, Kaichen Sun, Ben Watson, Matthew Prasak, Daniel Frey, Gunnar Grismore, Andrew Anderson, Mark Hogan, and Neha Chachra for their help with data collection; David Dimond and Weijie Yu for their help with annotation; and Anastasia Tkach for machine learning development and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Twigg .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9879 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, A. et al. (2025). EgoBody3M: Egocentric Body Tracking on a VR Headset using a Diverse Dataset. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15137. Springer, Cham. https://doi.org/10.1007/978-3-031-72986-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72986-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72985-0

  • Online ISBN: 978-3-031-72986-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics