[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancing Tracking Robustness with Auxiliary Adversarial Defense Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Adversarial attacks in visual object tracking have significantly degraded the performance of advanced trackers by introducing imperceptible perturbations into images. However, there is still a lack of research on designing adversarial defense methods for object tracking. To address these issues, we propose an effective auxiliary pre-processing defense network, AADN, which performs defensive transformations on the input images before feeding them into the tracker. Moreover, it can be seamlessly integrated with other visual trackers as a plug-and-play module without parameter adjustments. We train AADN using adversarial training, specifically employing Dua-Loss to generate adversarial samples that simultaneously attack the classification and regression branches of the tracker. Extensive experiments conducted on the OTB100, LaSOT, and VOT2018 benchmarks demonstrate that AADN maintains excellent defense robustness against adversarial attack methods in both adaptive and non-adaptive attack scenarios. Moreover, when transferring the defense network to heterogeneous trackers, it exhibits reliable transferability. Finally, AADN achieves a processing time of up to 5ms/frame, allowing seamless integration with existing high-speed trackers without introducing significant computational overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: International Conference on Machine Learning, pp. 274–283. PMLR (2018)

    Google Scholar 

  2. Bai, T., Luo, J., Zhao, J., Wen, B., Wang, Q.: Recent advances in adversarial training for adversarial robustness. arXiv preprint arXiv:2102.01356 (2021)

  3. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14 (2017)

    Google Scholar 

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  5. Chen, X., et al.: One-shot adversarial attacks on visual tracking with dual attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10176–10185 (2020)

    Google Scholar 

  6. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5374–5383 (2019)

    Google Scholar 

  7. Folz, J., Palacio, S., Hees, J., Dengel, A.: Adversarial defense based on structure-to-signal autoencoders. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3568–3577. IEEE (2020)

    Google Scholar 

  8. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6572

  10. Guo, Q., et al.: SPARK: spatial-aware online incremental attack against visual tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 202–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_13

    Chapter  Google Scholar 

  11. Jia, S., Song, Y., Ma, C., Yang, X.: IoU attack: towards temporally coherent black-box adversarial attack for visual object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6709–6718 (2021)

    Google Scholar 

  12. Kristan, M., et al.: The sixth visual object tracking VOT2018 challenge results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  13. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and Hall/CRC (2018)

    Google Scholar 

  14. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

  15. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)

    Google Scholar 

  16. Li, P., Jin, J.: Time3D: end-to-end joint monocular 3D object detection and tracking for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3885–3894 (2022)

    Google Scholar 

  17. Li, Z., et al.: A simple and strong baseline for universal targeted attacks on Siamese visual tracking. IEEE Trans. Circuits Syst. Video Technol. 32(6), 3880–3894 (2022). https://doi.org/10.1109/TCSVT.2021.3120479

    Article  Google Scholar 

  18. Liang, S., Wei, X., Yao, S., Cao, X.: Efficient adversarial attacks for visual object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 34–50. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_3

    Chapter  Google Scholar 

  19. Liu, S., et al.: Efficient universal shuffle attack for visual object tracking. In: 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2022, pp. 2739–2743 (2022). https://doi.org/10.1109/ICASSP43922.2022.9747773

  20. Luo, C., Yang, X., Yuille, A.: Exploring simple 3D multi-object tracking for autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10488–10497 (2021)

    Google Scholar 

  21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  22. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE (2016)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Sandoval, L.A.C.: Low cost object tracking by computer vision using 8 bits communication with a viper robot. In: 2023 8th International Conference on Control and Robotics Engineering (ICCRE), pp. 232–237 (2023). https://doi.org/10.1109/ICCRE57112.2023.10155618

  25. Shafahi, A., et al.: Adversarial training for free! In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf

  26. Suttapak, W., Zhang, J., Zhang, L.: Diminishing-feature attack: the adversarial infiltration on visual tracking. Neurocomputing 509, 21–33 (2022)

    Article  Google Scholar 

  27. Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6199

  28. Tramer, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial example defenses. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1633–1645 (2020)

    Google Scholar 

  29. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

    Google Scholar 

  30. Wilson, J., Lin, M.C.: AVOT: audio-visual object tracking of multiple objects for robotics. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10045–10051 (2020). https://doi.org/10.1109/ICRA40945.2020.9197528

  31. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial training. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=BJx040EFvH

  32. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015). https://doi.org/10.1109/TPAMI.2014.2388226

    Article  Google Scholar 

  33. Yan, B., Wang, D., Lu, H., Yang, X.: Cooling-shrinking attack: blinding the tracker with imperceptible noises. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  34. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62272089) and the Open Project of the Intelligent Terminal Key Laboratory of Sichuan Province (SCITLAB-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Yu, R., Liu, Q., Cheng, S., Qiu, S., Zhou, S. (2025). Enhancing Tracking Robustness with Auxiliary Adversarial Defense Networks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15104. Springer, Cham. https://doi.org/10.1007/978-3-031-72952-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72952-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72951-5

  • Online ISBN: 978-3-031-72952-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics