[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SCOD: From Heuristics to Theory

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

This paper addresses the problem of designing reliable prediction models that abstain from predictions when faced with uncertain or out-of-distribution samples - a recently proposed problem known as Selective Classification in the presence of Out-of-Distribution data (SCOD). We make three key contributions to SCOD. Firstly, we demonstrate that the optimal SCOD strategy involves a Bayes classifier for in-distribution (ID) data and a selector represented as a stochastic linear classifier in a 2D space, using i) the conditional risk of the ID classifier, and ii) the likelihood ratio of ID and out-of-distribution (OOD) data as input. This contrasts with suboptimal strategies from current OOD detection methods and the Softmax Information Retaining Combination (SIRC), specifically developed for SCOD. Secondly, we establish that in a distribution-free setting, the SCOD problem is not Probably Approximately Correct learnable when relying solely on an ID data sample. Third, we introduce POSCOD, a simple method for learning a plugin estimate of the optimal SCOD strategy from both an ID data sample and an unlabeled mixture of ID and OOD data. Our empirical results confirm the theoretical findings and demonstrate that our proposed method, POSCOD, outperforms existing OOD methods in effectively addressing the SCOD problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Distribution-free setting implies learning guarantees for any data distribution.

  2. 2.

    We use shortcuts \(\mathcal {Y}^\mathcal {X}=\{h:\mathcal {X}\rightarrow \mathcal {Y}\}\), \([0,1]^\mathcal {X}=\{c:\mathcal {X}\rightarrow [0,1]\}\).

  3. 3.

    The trivial hypothesis space involves a single selector, reducing the SCOD problem to standard prediction under the closed-world assumption - known to be learnable when \(\mathcal{H}\) has finite complexity.

References

  1. Bitterwolf, J., Mueller, M., Hein, M.: In or out? Fixing imagenet out-of-distribution detection evaluation. In: ICML (2023). https://proceedings.mlr.press/v202/bitterwolf23a.html

  2. Blanchard, G., Lee, G., Scott, C.: Semi-supervised novelty detection. J. Mach. Learn. Res. 11, 2973–3009 (2010)

    MathSciNet  Google Scholar 

  3. Cen, J., et al.: The devil is in the wrongly-classified samples: towards unified open-set recognition. In: ICLR (2023)

    Google Scholar 

  4. Chen, G., Peng, P., Wang, X., Tian, Y.: Adversarial reciprocal points learning for open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8065–8081 (2022)

    Google Scholar 

  5. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory 16(1), 41–46 (1970)

    Article  Google Scholar 

  6. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014). https://doi.org/10.1109/CVPR.2014.461

  7. DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018)

  8. Dhamija, A.R., Günther, M., Boult, T.: Reducing network agnostophobia. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  9. Djurisic, A., Bozanic, N., Ashok, A., Liu, R.: Extremely simple activation shaping for out-of-distribution detection. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=ndYXTEL6cZz

  10. Fang, Z., Li, Y., Lu, J., Dong, J., Han, B., Liu, F.: Is out-of-distribution detection learnable? In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 37199–37213. Curran Associates, Inc. (2022)

    Google Scholar 

  11. Franc, V., Prusa, D., Voracek, V.: Optimal strategies for reject option classifiers. J. Mach. Learn. Res. 24(11), 1–49 (2023)

    MathSciNet  Google Scholar 

  12. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Advances in Neural Information Processing Systems, vol. 30, pp. 4878–4887 (2017)

    Google Scholar 

  13. Granese, F., Romanelli, M., Gorla, D., Palamidessi, C., Piantanida, P.: Doctor: a simple method for detecting misclassification errors. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 5669–5681. Curran Associates, Inc. (2021)

    Google Scholar 

  14. Hendrycks, D., et al.: Scaling out-of-distribution detection for real-world settings. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 8759–8773. PMLR (2022)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  16. Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distributional shifts in the wild. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  17. Huang, R., Li, Y.: MOS: towards scaling out-of-distribution detection for large semantic space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8710–8719 (2021)

    Google Scholar 

  18. Katz-Samuels, J., Nakhleh, J., Nowak, R., Li, Y.: Training OOD detectors in their natural habitats. In: ICML (2022)

    Google Scholar 

  19. Kim, J., Koo, J., Hwang, S.: A unified benchmark for the unknown detection capability of deep neural networks. Expert Syst. Appl. 229, 120461 (2021). https://api.semanticscholar.org/CorpusID:244773165

  20. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  21. Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vision 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z

    Article  Google Scholar 

  22. Le, Y., Yang, X.S.: Tiny imagenet visual recognition challenge (2015)

    Google Scholar 

  23. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  24. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  25. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 21464–21475. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf

  26. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  27. Narasimhan, H., Krisna Menon, A., Jitkrittum, W., Kumar, S.: Plugin estimators for selective classification with out-of-distribution detection. arXiv preprint arXiv:2301.12386v4 (2023)

  28. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  29. Neal, L., Olson, M., Fern, X., Wong, W.-K., Li, F.: Open set learning with counterfactual images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 620–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_38

    Chapter  Google Scholar 

  30. Neyman, J., Person, E.: On the use and interpretation of certain test criteria for purpose of statistical inference. Biometrica 175–240 (1928)

    Google Scholar 

  31. Pietraszek, T.: Optimizing abstaining classifiers using ROC analysis. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 665–672 (2005)

    Google Scholar 

  32. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. In: Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021). https://openreview.net/forum?id=Zkj_VcZ6ol

  33. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  34. Song, Y., Sebe, N., Wang, W.: Rankfeat: rank-1 feature removal for out-of-distribution detection. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 17885–17898. Curran Associates, Inc. (2022)

    Google Scholar 

  35. Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activations. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 144–157. Curran Associates, Inc. (2021)

    Google Scholar 

  36. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest neighbors. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 20827–20840. PMLR (2022)

    Google Scholar 

  37. TorchVision maintainers and contributors: Torchvision: Pytorch’s computer vision library. GitHub repository (2016). https://github.com/pytorch/vision

  38. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008). https://doi.org/10.1109/TPAMI.2008.128

    Article  Google Scholar 

  39. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  40. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Open-set recognition: a good closed-set classifier is all you need? In: International Conference on Learning Representations (2022)

    Google Scholar 

  41. Wang, H., Li, Z., Feng, L., Zhang, W.: Vim: out-of-distribution with virtual-logit matching. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4911–4920 (2022)

    Google Scholar 

  42. Xia, G., Bouganis, C.S.: Augmenting softmax information for selective classification with out-of-distribution data. In: Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 1995–2012 (2022)

    Google Scholar 

  43. Yang, J., et al.: Openood: benchmarking generalized out-of-distribution detection. In: Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmar (2022)

    Google Scholar 

  44. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work from the CTU institutional support (Future Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Franc .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 730 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franc, V., Paplham, J., Prusa, D. (2025). SCOD: From Heuristics to Theory. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15142. Springer, Cham. https://doi.org/10.1007/978-3-031-72907-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72907-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72906-5

  • Online ISBN: 978-3-031-72907-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics