[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GAMMA-FACE: GAussian Mixture Models Amend Diffusion Models for Bias Mitigation in Face Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15125))

Included in the following conference series:

  • 53 Accesses

Abstract

Significant advancements have been achieved in the domain of face generation with the adoption of diffusion models. However, diffusion models tend to amplify biases during the generative process, resulting in an uneven distribution of sensitive facial attributes such as age, gender, and race. In this paper, we introduce a novel approach to address this issue by debiasing the attributes in the images generated by diffusion models. Our approach involves disentangling facial attributes by localizing the means within the latent space of the diffusion model using Gaussian mixture models (GMM). This method, leveraging the adaptable latent structure of diffusion models, allows us to localize the subspace responsible for generating specific attributes on-the-fly without the need for retraining. We demonstrate the effectiveness of our technique across various face datasets, resulting in fairer data generation while preserving sample quality. Furthermore, we empirically illustrate its effectiveness in reducing bias in downstream classification tasks without compromising performance by augmenting the original dataset with fairly generated data.

B. Pal and A. Kannan—Indicates equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albiero, V., Zhang, K., Bowyer, K.W.: How does gender balance in training data affect face recognition accuracy? In: 2020 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10. IEEE (2020)

    Google Scholar 

  2. Albiero, V., Zhang, K., King, M.C., Bowyer, K.W.: Gendered differences in face recognition accuracy explained by hairstyles, makeup, and facial morphology. IEEE Trans. Inf. Forensics Secur. 17, 127–137 (2021)

    Article  Google Scholar 

  3. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  5. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)

    Google Scholar 

  6. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71

    Chapter  Google Scholar 

  7. Choi, K., Grover, A., Singh, T., Shu, R., Ermon, S.: Fair generative modeling via weak supervision. In: International Conference on Machine Learning, pp. 1887–1898. PMLR (2020)

    Google Scholar 

  8. Dhar, P., Gleason, J., Roy, A., Castillo, C.D., Chellappa, R.: Pass: protected attribute suppression system for mitigating bias in face recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15087–15096 (2021)

    Google Scholar 

  9. Dhar, P., Gleason, J., Roy, A., Castillo, C.D., Phillips, P.J., Chellappa, R.: Distill and de-bias: mitigating bias in face verification using knowledge distillation. arXiv preprint arXiv:2112.09786 (2021)

  10. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  11. Duarte, A.C., et al.: Wav2pix: speech-conditioned face generation using generative adversarial networks. In: ICASSP, pp. 8633–8637 (2019)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  13. Grover, A., et al.: Bias correction of learned generative models using likelihood-free importance weighting. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J.: Long text generation via adversarial training with leaked information. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  15. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  16. Huang, Z., Chan, K.C., Jiang, Y., Liu, Z.: Collaborative diffusion for multi-modal face generation and editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6080–6090 (2023)

    Google Scholar 

  17. Jain, N., Olmo, A., Sengupta, S., Manikonda, L., Kambhampati, S.: Imperfect imaganation: implications of GANs exacerbating biases on facial data augmentation and snapchat face lenses. Artif. Intell. 304, 103652 (2022)

    Article  Google Scholar 

  18. Karkkainen, K., Joo, J.: Fairface: face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1548–1558 (2021)

    Google Scholar 

  19. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  21. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  22. Kashyap, R.: Inconsistency of the AIC rule for estimating the order of autoregressive models. IEEE Trans. Autom. Control 25(5), 996–998 (1980)

    Article  MathSciNet  Google Scholar 

  23. Krishnapriya, K., Albiero, V., Vangara, K., King, M.C., Bowyer, K.W.: Issues related to face recognition accuracy varying based on race and skin tone. IEEE Trans. Technol. Soc. 1(1), 8–20 (2020)

    Article  Google Scholar 

  24. Lee, J., Kim, E., Lee, J., Lee, J., Choo, J.: Learning debiased representation via disentangled feature augmentation. Adv. Neural. Inf. Process. Syst. 34, 25123–25133 (2021)

    Google Scholar 

  25. Liu, M.Y., Huang, X., Yu, J., Wang, T.C., Mallya, A.: Generative adversarial networks for image and video synthesis: algorithms and applications. Proc. IEEE 109(5), 839–862 (2021)

    Article  Google Scholar 

  26. Luccioni, A.S., Akiki, C., Mitchell, M., Jernite, Y.: Stable bias: analyzing societal representations in diffusion models. arXiv preprint arXiv:2303.11408 (2023)

  27. Maluleke, V.H., et al.: Studying bias in GANs through the lens of race. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 344–360. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_20

    Chapter  Google Scholar 

  28. Michael, K., Abbas, R., Jayashree, P., Bandara, R.J., Aloudat, A.: Biometrics and AI bias. IEEE Trans. Technol. Soc. 3(1), 2–8 (2022)

    Article  Google Scholar 

  29. Mittermaier, M., Raza, M.M., Kvedar, J.C.: Bias in AI-based models for medical applications: challenges and mitigation strategies. NPJ Digit. Med. 6(1), 113 (2023)

    Google Scholar 

  30. Müller-Franzes, G., et al.: A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis. Sci. Rep. 13(1), 12098 (2023)

    Article  Google Scholar 

  31. Naik, R., Nushi, B.: Social biases through the text-to-image generation lens. arXiv preprint arXiv:2304.06034 (2023)

  32. Ojha, U., et al.: Few-shot image generation via cross-domain correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10743–10752 (2021)

    Google Scholar 

  33. Perera, M.V., Patel, V.M.: Analyzing bias in diffusion-based face generation models. In: 2023 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–10. IEEE (2023)

    Google Scholar 

  34. Ramaswamy, V.V., Kim, S.S., Russakovsky, O.: Fair attribute classification through latent space de-biasing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9301–9310 (2021)

    Google Scholar 

  35. Reynolds, D.A., et al.: Gaussian mixture models. Encyclopedia Biometrics 741(659-663) (2009)

    Google Scholar 

  36. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  37. de Rosa, G.H., Papa, J.P.: A survey on text generation using generative adversarial networks. Pattern Recogn. 119, 108098 (2021)

    Article  Google Scholar 

  38. Sauer, A., Schwarz, K., Geiger, A.: Stylegan-XL: scaling stylegan to large diverse datasets. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)

    Google Scholar 

  39. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 461–464 (1978)

    Google Scholar 

  40. Sharmanska, V., Hendricks, L.A., Darrell, T., Quadrianto, N.: Contrastive examples for addressing the tyranny of the majority. arXiv preprint arXiv:2004.06524 (2020)

  41. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  42. Singh, J., Gould, S., Zheng, L.: High-fidelity guided image synthesis with latent diffusion models. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5997–6006. IEEE (2023)

    Google Scholar 

  43. Stypułkowski, M., Vougioukas, K., He, S., Zieba, M., Petridis, S., Pantic, M.: Diffused heads: diffusion models beat GANs on talking-face generation. arXiv preprint arXiv:2301.03396 (2023)

  44. Tan, S., Shen, Y., Zhou, B.: Improving the fairness of deep generative models without retraining. arXiv preprint arXiv:2012.04842 (2020)

  45. Teo, C.T., Abdollahzadeh, M., Cheung, N.M.: Fair generative models via transfer learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 2429–2437 (2023)

    Google Scholar 

  46. Wang, A., Russakovsky, O.: Directional bias amplification. In: International Conference on Machine Learning, pp. 10882–10893. PMLR (2021)

    Google Scholar 

  47. Wilson, B., Hoffman, J., Morgenstern, J.: Predictive inequity in object detection. arXiv preprint arXiv:1902.11097 (2019)

  48. Wu, H., Albiero, V., Krishnapriya, K., King, M.C., Bowyer, K.W.: Face recognition accuracy across demographics: shining a light into the problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1041–1050 (2023)

    Google Scholar 

  49. Yang, L., et al.: Diffusion models: a comprehensive survey of methods and applications. ACM Comput. Surv. 56(4), 1–39 (2023)

    Article  Google Scholar 

  50. Zhang, F., et al.: Distributionally generative augmentation for fair facial attribute classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22797–22808 (2024)

    Google Scholar 

  51. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via [2022-21102100005]. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The US. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudha Pal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 28220 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, B., Kannan, A., Kathirvel, R.P., O’Toole, A.J., Chellappa, R. (2025). GAMMA-FACE: GAussian Mixture Models Amend Diffusion Models for Bias Mitigation in Face Images. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15125. Springer, Cham. https://doi.org/10.1007/978-3-031-72855-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72855-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72854-9

  • Online ISBN: 978-3-031-72855-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics