Abstract
Existing motion forecasting models, while making progress, struggle to bridge the gap between the source and target domains. Recent solutions often rely on an unrealistic assumption that the target domain remains stationary. Due to the ever-changing environment, however, the real-world test distribution may experience ongoing/continual shifts over time, leading to catastrophic forgetting and error accumulation when adapting to evolving domains. To solve these challenges, this work introduces HoCoTTA, a framework for homeostatic continual test-time adaptation. It aligns with the knowledge distillation and parameter isolation paradigm, enabling the identification of domain-invariant and domain-specific knowledge, where the former is shared (to be retained) in continual TTA across domains, while the latter needs to be updated. Specifically, we propose a multi-domain homeostasis assessment to estimate the uncertainty of the current model parameter when faced with novel-domain samples. Then, the Fisher information matrix is computed to measure the parameter sensitivity, with larger indicating the domain-sensitive parameter, and vice versa. Moreover, we propose an isolated parameter optimization strategy to update those domain-specific parameters to adapt to the new-domain, while preserving the invariant ones. In our experimental result, HoCoTTA outperforms the state-of-the-art approaches on several benchmarks, especially excelling in addressing continuous domain drifts, achieving a large improvement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CMU Graphics Lab: Carnegie-Mellon motion capture (Mocap) database (2003). http://mocap.cs.cmu.edu
Aliakbarian, S., Saleh, F., Petersson, L., Gould, S., Salzmann, M.: Contextually plausible and diverse 3D human motion prediction. In: ICCV, pp. 11333–11342 (2021)
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR, pp. 3686–3693 (2014)
Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: CVPR, pp. 1418–1427 (2018)
Bayasi, N., Hamarneh, G., Garbi, R.: Culprit-Prune-Net: efficient continual sequential multi-domain learning with application to skin lesion classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 165–175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_16
Brahma, D., Rai, P.: A probabilistic framework for lifelong test-time adaptation. In: CVPR, pp. 3582–3591 (2023)
Cai, Y., et al.: Learning progressive joint propagation for human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14
Chen, D., Wang, D., Darrell, T., Ebrahimi, S.: Contrastive test-time adaptation. In: CVPR, pp. 295–305 (2022)
Chen, L., Zhang, Y., Song, Y., Shan, Y., Liu, L.: Improved test-time adaptation for domain generalization. In: CVPR, pp. 24172–24182 (2023)
Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F.: Context-aware human motion prediction. In: CVPR, pp. 6992–7001 (2020)
Cui, Q., Sun, H., Lu, J., Li, B., Li, W.: Meta-auxiliary learning for adaptive human pose prediction. In: AAAI (2023)
Cui, Q., et al.: Test-time personalizable forecasting of 3D human poses. In: ICCV, pp. 274–283 (2023)
Cui, Q., Sun, H., Yang, F.: Learning dynamic relationships for 3D human motion prediction. In: CVPR, pp. 6519–6527 (2020)
Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In: ICCV, pp. 11467–11476 (2021)
Fang, Y., Yap, P.T., Lin, W., Zhu, H., Liu, M.: Source-free unsupervised domain adaptation: a survey. arXiv preprint arXiv:2301.00265 (2022)
Fleuret, F., et al.: Test time adaptation through perturbation robustness. In: NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications (2021)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: ICCV, pp. 4346–4354 (2015)
Gan, Y., et al.: Decorate the newcomers: visual domain prompt for continual test time adaptation. In: AAAI, vol. 37, pp. 7595–7603 (2023)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML, pp. 1180–1189. PMLR (2015)
Gong, T., Jeong, J., Kim, T., Kim, Y., Shin, J., Lee, S.J.: Note: robust continual test-time adaptation against temporal correlation. NeurIPS 35, 27253–27266 (2022)
Gui, L.Y., Wang, Y.X., Liang, X., Moura, J.M.F.: Adversarial geometry-aware human motion prediction. In: ECCV, pp. 786–803 (2018)
Guo, W., Du, Y., Shen, X., Lepetit, V., Alameda-Pineda, X., Moreno-Noguer, F.: Back to MLP: a simple baseline for human motion prediction. In: WACV, pp. 4809–4819 (2023)
Guo, X., Choi, J.: Human motion prediction via learning local structure representations and temporal dependencies. In: AAAI, pp. 2580–2587 (2019)
Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C.: In the wild human pose estimation using explicit 2D features and intermediate 3D representations. In: CVPR, pp. 10905–10914 (2019)
Hassan, M., et al.: Stochastic scene-aware motion prediction. In: ICCV, pp. 11374–11384 (2021)
He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L.: Autoencoder based self-supervised test-time adaptation for medical image analysis. Med. Image Anal. 72, 102136 (2021)
Hu, M., et al.: Fully test-time adaptation for image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 251–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_24
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE TPAMI 36, 1325–1339 (2014)
Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)
Kundu, J.N., Gor, M., Babu, R.V.: BiHMP-GAN: bidirectional 3D human motion prediction GAN. In: AAAI, vol. 33, pp. 8553–8560 (2019)
Kundu, J.N., Venkat, N., Babu, R.V., et al.: Universal source-free domain adaptation. In: CVPR, pp. 4544–4553 (2020)
Li, C., Zhang, Z., Sun Lee, W., Hee Lee, G.: Convolutional sequence to sequence model for human dynamics. In: CVPR, pp. 5226–5234 (2018)
Li, J., Seltzer, M.L., Wang, X., Zhao, R., Gong, Y.: Large-scale domain adaptation via teacher-student learning. arXiv preprint arXiv:1708.05466 (2017)
Li, M., Chen, S., Zhang, Z., Xie, L., Tian, Q., Zhang, Y.: Skeleton-parted graph scattering networks for 3D human motion prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13666, pp. 18–36. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_2
Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction. In: CVPR, pp. 214–223 (2020)
Li, S., Xie, M., Gong, K., Liu, C.H., Wang, Y., Li, W.: Transferable semantic augmentation for domain adaptation. In: CVPR, pp. 11516–11525 (2021)
Li, Y., Li, K., Jiang, S., Zhang, Z., Huang, C., Da Xu, R.Y.: Geometry-driven self-supervised method for 3D human pose estimation. In: AAAI, vol. 34, pp. 11442–11449 (2020)
Liu, J., et al.: ViDA: homeostatic visual domain adapter for continual test time adaptation. arXiv preprint arXiv:2306.04344 (2023)
Liu, J., Yuan, H., Lu, X.M., Wang, X.: Quantum fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor. 53(2), 023001 (2020)
Liu, Q., Lin, L., Shen, Z., Yang, Z.: Periodically exchange teacher-student for source-free object detection. In: ICCV, pp. 6414–6424 (2023)
Liu, Y., Zhang, W., Wang, J.: Source-free domain adaptation for semantic segmentation. In: CVPR, pp. 1215–1224 (2021)
Liu, Y., Kothari, P., Van Delft, B., Bellot-Gurlet, B., Mordan, T., Alahi, A.: TTT++: when does self-supervised test-time training fail or thrive? NeurIPS 34, 21808–21820 (2021)
Liu, Z., Lyu, K., Wu, S., Chen, H., Hao, Y., Ji, S.: Aggregated multi-GANs for controlled 3D human motion prediction. In: AAAI, pp. 2225–2232 (2021)
Lodagala, V.S., Ghosh, S., Umesh, S.: PADA: pruning assisted domain adaptation for self-supervised speech representations. In: 2022 IEEE Spoken Language Technology Workshop (SLT), pp. 136–143. IEEE (2023)
Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: CVPR, pp. 6437–6446 (2022)
Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: CVPR, pp. 6437–6446 (2022)
Mao, W., Liu, M., Salzmann, M.: Generating smooth pose sequences for diverse human motion prediction. In: ICCV, pp. 13309–13318 (2021)
Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: ICCV, pp. 9489–9497 (2019)
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: CVPR, pp. 2891–2900 (2017)
Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (POTR): human motion prediction with non-autoregressive transformers. In: ICCV, pp. 2276–2284 (2021)
Melas-Kyriazi, L., Manrai, A.K.: PixMatch: unsupervised domain adaptation via pixelwise consistency training. In: CVPR, pp. 12435–12445 (2021)
Orbes-Arteaga, M., et al.: Augmentation based unsupervised domain adaptation. arXiv preprint arXiv:2202.11486 (2022)
Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NIPS (2019)
Piergiovanni, A.J., Angelova, A., Toshev, A., Ryoo, M.S.: Adversarial generative grammars for human activity prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_30
Roy, S., et al.: Uncertainty-guided source-free domain adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13685, pp. 537–555. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19806-9_31
Ruiz, A.H., Gall, J., Moreno-Noguer, F.: Human motion prediction via spatio-temporal inpainting. In: CVPR, pp. 7134–7143 (2018)
Saadatnejad, S., et al.: A generic diffusion-based approach for 3D human pose prediction in the wild. In: ICRA, pp. 8246–8253. IEEE (2023)
Sanyal, S., Babu, R.V., et al.: Continual domain adaptation through pruning-aided domain-specific weight modulation. In: CVPR, pp. 2456–2462 (2023)
Shin, C., Kim, T., Lee, S., Leey, S.: Test-time adaptation for out-of-distributed image inpainting. In: ICIP (2021)
Sofianos, T., Sampieri, A., Franco, L., Galasso, F.: Space-time-separable graph convolutional network for pose forecasting. In: ICCV, pp. 11209–11218 (2021)
Sójka, D., Cygert, S., Twardowski, B., Trzciński, T.: AR-TTA: a simple method for real-world continual test-time adaptation. In: ICCV, pp. 3491–3495 (2023)
Spall, J.C.: Monte Carlo computation of the fisher information matrix in nonstandard settings. J. Comput. Graph. Stat. 14(4), 889–909 (2005)
Taheri, O., Ghorbani, N., Black, M.J., Tzionas, D.: GRAB: a dataset of whole-body human grasping of objects. In: ECCV (2020)
Tanke, J., et al.: Social diffusion: long-term multiple human motion anticipation. In: ICCV, pp. 9601–9611 (2023)
Tomar, D., Vray, G., Bozorgtabar, B., Thiran, J.P.: TeSLA: test-time self-learning with automatic adversarial augmentation. In: CVPR, pp. 20341–20350 (2023)
Varsavsky, T., Orbes-Arteaga, M., Sudre, C.H., Graham, M.S., Nachev, P., Cardoso, M.J.: Test-time unsupervised domain adaptation. In: Martel, A.L., et al. (eds.) MICCAI 2020, pp. 428–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_42
Volpi, R., Morerio, P., Savarese, S., Murino, V.: Adversarial feature augmentation for unsupervised domain adaptation. In: CVPR, pp. 5495–5504 (2018)
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)
Wang, Q., Fink, O., Van Gool, L., Dai, D.: Continual test-time domain adaptation. In: CVPR, pp. 7201–7211 (2022)
Xu, C., Tan, R.T., Tan, Y., Chen, S., Wang, X., Wang, Y.: Auxiliary tasks benefit 3D skeleton-based human motion prediction. In: ICCV, pp. 9509–9520 (2023)
Xu, S., Wang, Y.X., Gui, L.Y.: Diverse human motion prediction guided by multi-level spatial-temporal anchors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13682, pp. 251–269. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_15
Yang, S., Wang, Y., Van De Weijer, J., Herranz, L., Jui, S.: Generalized source-free domain adaptation. In: ICCV, pp. 8978–8987 (2021)
Ye, J., Fu, C., Zheng, G., Paudel, D.P., Chen, G.: Unsupervised domain adaptation for nighttime aerial tracking. In: CVPR, pp. 8896–8905 (2022)
Yuan, L., Xie, B., Li, S.: Robust test-time adaptation in dynamic scenarios. In: CVPR, pp. 15922–15932 (2023)
Zhang, M., Levine, S., Finn, C.: MEMO: test time robustness via adaptation and augmentation. NeurIPS 35, 38629–38642 (2022)
Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: predicting how 3D bodies move. In: CVPR, pp. 3372–3382 (2021)
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China (62176125, 62306141), and in part by the Natural Science Foundation of Jiangsu Province (BK20220939).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cui, Q., Sun, H., Li, W., Lu, J., Li, B. (2025). Human Motion Forecasting in Dynamic Domain Shifts: A Homeostatic Continual Test-Time Adaptation Framework. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. https://doi.org/10.1007/978-3-031-72751-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-72751-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72750-4
Online ISBN: 978-3-031-72751-1
eBook Packages: Computer ScienceComputer Science (R0)