[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15078))

Included in the following conference series:

  • 94 Accesses

Abstract

Graphic layout designs play an essential role in visual communication. Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production. Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers’ multimodal desires, i.e., constrained by background images and driven by foreground content. We propose LayoutDETR that inherits the high quality and realism from generative modeling, while reformulating content-aware requirements as a detection problem: we learn to detect in a background image the reasonable locations, scales, and spatial relations for multimodal foreground elements in a layout. Our solution sets a new state-of-the-art performance for layout generation on public benchmarks and on our newly-curated ad banner dataset. We integrate our solution into a graphical system that facilitates user studies, and show that users prefer our designs over baselines by significant margins. Code, models, dataset, and demos are available at GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 109.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 131.43
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://github.com/PaddlePaddle/PaddleOCR

  2. Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout generation. In: CVPR (2021)

    Google Scholar 

  3. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans. In: ICLR (2018)

    Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  5. Cao, Y., et al.: Geometry aligned variational transformer for image-conditioned layout generation. Multimedia (2022)

    Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: ECCV (2020)

    Google Scholar 

  7. Carlier, A., Danelljan, M., Alahi, A., Timofte, R.: Deepsvg: a hierarchical generative network for vector graphics animation. NeurIPS (2020)

    Google Scholar 

  8. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments (2020)

    Google Scholar 

  9. Chen, G., Xie, P., Dong, J., Wang, T.: Understanding programmatic creative: The role of ai. J. Advertising (2019)

    Google Scholar 

  10. Chen, X., Mishra, N., Rohaninejad, M., Abbeel, P.: Pixelsnail: an improved autoregressive generative model. In: ICML (2018)

    Google Scholar 

  11. Cheng, C.Y., Huang, F., Li, G., Li, Y.: Play: parametrically conditioned layout generation using latent diffusion. In: ICML (2023)

    Google Scholar 

  12. Dai, Z., Cai, B., Lin, Y., Chen, J.: Up-detr: unsupervised pre-training for object detection with transformers. In: CVPR (2021)

    Google Scholar 

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  14. Feng, W., et al.: Layoutgpt: compositional visual planning and generation with large language models. In: NeurIPS (2024)

    Google Scholar 

  15. Girshick, R.: Fast r-cnn. In: ICCV (2015)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial networks. In: NeurIPS (2014)

    Google Scholar 

  17. Guo, S., et al.: Vinci: an intelligent graphic design system for generating advertising posters. In: CHI (2021)

    Google Scholar 

  18. Gupta, K., Lazarow, J., Achille, A., Davis, L.S., Mahadevan, V., Shrivastava, A.: Layouttransformer: layout generation and completion with self-attention. In: ICCV (2021)

    Google Scholar 

  19. Haykin, S., Network, N.: A comprehensive foundation. Neural networks (2004)

    Google Scholar 

  20. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR (2022)

    Google Scholar 

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

    Google Scholar 

  22. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  23. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS (2020)

    Google Scholar 

  24. Horita, D., Inoue, N., Kikuchi, K., Yamaguchi, K., Aizawa, K.: Retrieval-augmented layout transformer for content-aware layout generation. arXiv (2023)

    Google Scholar 

  25. Hsu, H.Y., He, X., Peng, Y., Kong, H., Zhang, Q.: Posterlayout: a new benchmark and approach for content-aware visual-textual presentation layout. CVPR (2023)

    Google Scholar 

  26. Hui, M., Zhang, Z., Zhang, X., Xie, W., Wang, Y., Lu, Y.: Unifying layout generation with a decoupled diffusion model. In: CVPR (2023)

    Google Scholar 

  27. Hussain, Z., et al.: Automatic understanding of image and video advertisements. In: CVPR (2017)

    Google Scholar 

  28. Inoue, N., Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: Layoutdm: discrete diffusion model for controllable layout generation. In: CVPR (2023)

    Google Scholar 

  29. Jiang, Z., et al.: Unilayout: taming unified sequence-to-sequence transformers for graphic layout generation. arXiv (2022)

    Google Scholar 

  30. Jiang, Z., et al.: Layoutformer++: conditional graphic layout generation via constraint serialization and decoding space restriction. In: CVPR (2023)

    Google Scholar 

  31. Jiang, Z., Sun, S., Zhu, J., Lou, J.G., Zhang, D.: Coarse-to-fine generative modeling for graphic layouts. In: AAAI (2022)

    Google Scholar 

  32. Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: Layoutvae: stochastic scene layout generation from a label set. In: ICCV (2019)

    Google Scholar 

  33. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  34. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  35. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)

    Google Scholar 

  36. Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: Constrained graphic layout generation via latent optimization. In: ACM MM (2021)

    Google Scholar 

  37. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2013)

    Google Scholar 

  38. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  39. Kong, X., Jiang, L., Chang, H., Zhang, H., Hao, Y., Gong, H., Essa, I.: Blt: bidirectional layout transformer for controllable layout generation. In: ECCV (2022)

    Google Scholar 

  40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  41. Landa, R.: Graphic design solutions/robin landa. Wadsworth, Boston (2010)

    Google Scholar 

  42. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML (2016)

    Google Scholar 

  43. Lee, H.Y., et al.: Neural design network: graphic layout generation with constraints. In: ECCV (2020)

    Google Scholar 

  44. Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., Liu, C.: Vitgan: training gans with vision transformers. In: ICLR (2022)

    Google Scholar 

  45. Levi, E., Brosh, E., Mykhailych, M., Perez, M.: Dlt: conditioned layout generation with joint discrete-continuous diffusion layout transformer. In: ICCV (2023)

    Google Scholar 

  46. Li, G., Baechler, G., Tragut, M., Li, Y.: Learning to denoise raw mobile ui layouts for improving datasets at scale. In: CHI (2022)

    Google Scholar 

  47. Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: Layoutgan: generating graphic layouts with wireframe discriminators. In: ICLR (2019)

    Google Scholar 

  48. Li, J., Yang, J., Zhang, J., Liu, C., Wang, C., Xu, T.: Attribute-conditioned layout gan for automatic graphic design. TVCG (2020)

    Google Scholar 

  49. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML (2022)

    Google Scholar 

  50. Li, Z., et al.: Planning and rendering: Towards end-to-end product poster generation. arXiv (2023)

    Google Scholar 

  51. Lin, J., et al.: A parse-then-place approach for generating graphic layouts from textual descriptions. In: ICCV (2023)

    Google Scholar 

  52. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  53. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized gan training for high-fidelity few-shot image synthesis. In: ICLR (2020)

    Google Scholar 

  54. Lok, S., Feiner, S.: A survey of automated layout techniques for information presentations. In: Proceedings of SmartGraphics (2001)

    Google Scholar 

  55. Nauata, N., Chang, K.H., Cheng, C.Y., Mori, G., Furukawa, Y.: House-gan: relational generative adversarial networks for graph-constrained house layout generation. In: ECCV (2020)

    Google Scholar 

  56. Nauata, N., Hosseini, S., Chang, K.H., Chu, H., Cheng, C.Y., Furukawa, Y.: House-gan++: Generative adversarial layout refinement network towards intelligent computational agent for professional architects. In: CVPR (2021)

    Google Scholar 

  57. Nguyen, D.D., Nepal, S., Kanhere, S.S.: Diverse multimedia layout generation with multi choice learning. Multimedia (2021)

    Google Scholar 

  58. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelcnn decoders. In: NeurIPS (2016)

    Google Scholar 

  59. Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: Recursive autoencoders for document layout generation. In: CVPR Workshops (2020)

    Google Scholar 

  60. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  61. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. CVPR (2019)

    Google Scholar 

  62. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)

    Google Scholar 

  63. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  64. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: Pixelcnn++: improving the pixelcnn with discretized logistic mixture likelihood and other modifications. ICLR (2017)

    Google Scholar 

  65. Sauer, A., Schwarz, K., Geiger, A.: Stylegan-xl: scaling stylegan to large diverse datasets. In: SIGGRAPH (2022)

    Google Scholar 

  66. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  67. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP (2013)

    Google Scholar 

  68. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)

    Google Scholar 

  69. Stribley, M.: Rules of composition all designers live by. Retrieved May (2016)

    Google Scholar 

  70. Suvorov, R., et al.: Resolution-robust large mask inpainting with fourier convolutions. In: WACV (2022)

    Google Scholar 

  71. Tang, Z., Wu, C., Li, J., Duan, N.: Layoutnuwa: revealing the hidden layout expertise of large language models. In: ICLR (2024)

    Google Scholar 

  72. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  73. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  74. Wang, Y., et al.: Aesthetic text logo synthesis via content-aware layout inferring. In: CVPR (2022)

    Google Scholar 

  75. Xie, Y., Huang, D., Wang, J., Lin, C.Y.: Canvasemb: learning layout representation with large-scale pre-training for graphic design. Multimedia (2021)

    Google Scholar 

  76. Yamaguchi, K.: Canvasvae: learning to generate vector graphic documents. In: ICCV (2021)

    Google Scholar 

  77. Yu, F., Liu, K., Zhang, Y., Zhu, C., Xu, K.: Partnet: recursive part decomposition network for fine-grained and hierarchical shape segmentation. In: CVPR (2019)

    Google Scholar 

  78. Yu, J., et al.: Vector-quantized image modeling with improved vqgan. In: ICLR (2022)

    Google Scholar 

  79. Yu, N., Li, K., Zhou, P., Malik, J., Davis, L., Fritz, M.: Inclusive gan: improving data and minority coverage in generative models. In: ECCV (2020)

    Google Scholar 

  80. Yu, N., et al.: Dual contrastive loss and attention for gans. In: ICCV (2021)

    Google Scholar 

  81. Zhang, J., Guo, J., Sun, S., Lou, J.G., Zhang, D.: Layoutdiffusion: improving graphic layout generation by discrete diffusion probabilistic models. In: ICCV (2023)

    Google Scholar 

  82. Zheng, X., Qiao, X., Cao, Y., Lau, R.W.: Content-aware generative modeling of graphic design layouts. TOG (2019)

    Google Scholar 

  83. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: ICDAR (2019)

    Google Scholar 

  84. Zhou, M., Xu, C., Ma, Y., Ge, T., Jiang, Y., Xu, W.: Composition-aware graphic layout gan for visual-textual presentation designs. IJCAI (2022)

    Google Scholar 

Download references

Acknowledgments

We thank Shu Zhang, Silvio Savarese, Abigail Kutruff, Brian Brechbuhl, Elham Etemad, and Amrutha Krishnan from Salesforce for constructive advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18049 KB)

Supplementary material 2 (mov 82611 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, N. et al. (2025). LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15078. Springer, Cham. https://doi.org/10.1007/978-3-031-72661-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72661-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72660-6

  • Online ISBN: 978-3-031-72661-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics