[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Visible and Clear: Finding Tiny Objects in Difference Map

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15075))

Included in the following conference series:

  • 51 Accesses

Abstract

Tiny object detection is one of the key challenges for most generic detectors. The main difficulty lies in extracting effective features of tiny objects. Existing methods usually perform generation-based feature enhancement, which is seriously affected by spurious textures and artifacts, making it difficult to make the tiny-object-specific features visible and clear for detection. To address this issue, we propose a self-reconstructed tiny object detection (SR-TOD) framework. We for the first time introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects. Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects. This inspires us to enhance the weak representations of tiny objects under the guidance of the difference maps. Thus, improving the visibility of tiny objects for the detectors. Building on this, we further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear. In addition, we further propose a new multi-instance anti-UAV dataset. Extensive experiments demonstrate our effectiveness. The code is available: https://github.com/Hiyuur/SR-TOD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: Finding tiny faces in the wild with generative adversarial network. In: CVPR, pp. 21–30 (2018)

    Google Scholar 

  2. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 210–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_13

    Chapter  Google Scholar 

  3. Bashir, S.M.A., Wang, Y.: Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network. Remote Sens. 13(9), 1854 (2021)

    Article  Google Scholar 

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  5. Bosquet, B., Cores, D., Seidenari, L., Brea, V.M., Mucientes, M., Del Bimbo, A.: A full data augmentation pipeline for small object detection based on generative adversarial networks. PR 133, 108998 (2023)

    Google Scholar 

  6. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: CVPR, pp. 6154–6162 (2018)

    Google Scholar 

  7. Cao, B., et al.: Autoencoder-driven multimodal collaborative learning for medical image synthesis. IJCV 131, 1–20 (2023)

    Article  Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  9. Chen, C., Liu, M.-Y., Tuzel, O., Xiao, J.: R-CNN for small object detection. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 214–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_14

    Chapter  Google Scholar 

  10. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arxiv 2019. arXiv preprint arXiv:1906.07155 (2019)

  11. Cheng, G., et al.: Towards large-scale small object detection: survey and benchmarks. IEEE TPAMI 45(11), 13467–13488 (2023)

    Google Scholar 

  12. Coluccia, A., et al.: Drone-vs-bird detection challenge at IEEE avss2021. In: 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2021)

    Google Scholar 

  13. Dai, X., et al.: Dynamic head: unifying object detection heads with attentions. In: CVPR, pp. 7373–7382 (2021)

    Google Scholar 

  14. Deng, C., Wang, M., Liu, L., Liu, Y., Jiang, Y.: Extended feature pyramid network for small object detection. IEEE TMM 24, 1968–1979 (2021)

    Google Scholar 

  15. Du, D., et al.: Visdrone-det2019: the vision meets drone object detection in image challenge results. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 213–226 (2019)

    Google Scholar 

  16. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: a new multi-scale backbone architecture. IEEE TPAMI 43(2), 652–662 (2019)

    Article  Google Scholar 

  17. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR, pp. 7036–7045 (2019)

    Google Scholar 

  18. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  19. Gong, Y., Yu, X., Ding, Y., Peng, X., Zhao, J., Han, Z.: Effective fusion factor in FPN for tiny object detection. In: WACV, pp. 1160–1168 (2021)

    Google Scholar 

  20. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680 (2014)

    Google Scholar 

  21. Guo, G., Chen, P., Yu, X., Han, Z., Ye, Q., Gao, S.: Save the tiny, save the all: hierarchical activation network for tiny object detection. IEEE TCSVT (2023)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  23. Hu, X., et al.: SINet: a scale-insensitive convolutional neural network for fast vehicle detection. IEEE Trans. Intell. Transp. Syst. 20(3), 1010–1019 (2018)

    Article  Google Scholar 

  24. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: ICCV, pp. 13919–13929 (2021)

    Google Scholar 

  25. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)

  26. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: beyound anchor-based object detection. IEEE TIP 29, 7389–7398 (2020)

    Google Scholar 

  27. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  28. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: CVPR, pp. 1222–1230 (2017)

    Google Scholar 

  29. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: ICCV, pp. 6054–6063 (2019)

    Google Scholar 

  30. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  31. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  32. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  33. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)

    Google Scholar 

  34. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid R-CNN. In: CVPR, pp. 7363–7372 (2019)

    Google Scholar 

  35. Meethal, A., Granger, E., Pedersoli, M.: Cascaded zoom-in detector for high resolution aerial images. In: CVPRW, pp. 2045–2054 (2023)

    Google Scholar 

  36. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  37. Noh, J., Bae, W., Lee, W., Seo, J., Kim, G.: Finding tiny faces in the wild with generative adversarial network. In: ICCV, pp. 9725–9734 (2019)

    Google Scholar 

  38. Qiao, S., Chen, L.C., Yuille, A.: Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. In: CVPR, pp. 10213–10224 (2021)

    Google Scholar 

  39. Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., Chao, D.: Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sens. 12(9), 1432 (2020)

    Article  Google Scholar 

  40. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR, pp. 7263–7271 (2017)

    Google Scholar 

  41. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  42. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28, pp. 91–99 (2015)

    Google Scholar 

  43. Rodriguez-Ramos, A., Rodriguez-Vazquez, J., Sampedro, C., Campoy, P.: Adaptive inattentional framework for video object detection with reward-conditional training. IEEE Access 8, 124451–124466 (2020)

    Article  Google Scholar 

  44. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  45. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  46. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection snip. In: CVPR, pp. 3578–3587 (2018)

    Google Scholar 

  47. Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: CVPR, pp. 14454–14463 (2021)

    Google Scholar 

  48. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: CVPR, pp. 10781–10790 (2020)

    Google Scholar 

  49. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV, pp. 9627–9636 (2019)

    Google Scholar 

  50. Vu, T., Jang, H., Pham, T.X., Yoo, C.: Cascade RPN: delving into high-quality region proposal network with adaptive convolution. In: NeurIPS, vol. 32, pp. 1432–1442 (2019)

    Google Scholar 

  51. Wang, J., Yang, W., Guo, H., Zhang, R., Xia, G.S.: Tiny object detection in aerial images. In: ICPR, pp. 3791–3798 (2021)

    Google Scholar 

  52. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Proceedings of the IEEE conference on computer vision and pattern recognition. In: CVPR, pp. 1492–1500 (2017)

    Google Scholar 

  53. Xu, C., Wang, J., Yang, W., Yu, H., Yu, L., Xia, G.S.: RFLA: Gaussian receptive field based label assignment for tiny object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13669, pp. 526–543. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_31

    Chapter  Google Scholar 

  54. Yang, C., Huang, Z., Wang, N.: Querydet: cascaded sparse query for accelerating high-resolution small object detection. In: CVPR, pp. 13668–13677 (2022)

    Google Scholar 

  55. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. In: ICCV, pp. 9657–9666 (2019)

    Google Scholar 

  56. Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: WACV, pp. 1257–1265 (2020)

    Google Scholar 

  57. Yuan, X., Cheng, G., Yan, K., Zeng, Q., Han, J.: Small object detection via coarse-to-fine proposal generation and imitation learning. In: ICCV, pp. 6317–6327 (2023)

    Google Scholar 

  58. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV, pp. 2018–2025 (2011)

    Google Scholar 

  59. Zhang, H., et al.: Dino: DeTR with improved denoising anchor boxes for end-to-end object detection. In: ICLR (2022)

    Google Scholar 

  60. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR, pp. 9759–9768 (2020)

    Google Scholar 

  61. Zhao, J., Zhang, J., Li, D., Wang, D.: Vision-based anti-UAV detection and tracking. IEEE Trans. Intell. Transp. Syst. 23(12), 25323–25334 (2022)

    Article  Google Scholar 

  62. Zhou, Y., Deng, W., Tong, T., Gao, Q.: Guided frequency separation network for real-world super-resolution. In: CVPRW, pp. 428–429 (2020)

    Google Scholar 

  63. Zhu, P., et al.: VisDrone-DET2018: the vision meets drone object detection in image challenge results. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 437–468. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_27

    Chapter  Google Scholar 

  64. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DeTR: deformable transformers for end-to-end object detection. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored in part by the National Key R&D Program of China 2022ZD0116500, in part by the National Natural Science Foundation of China (62106171, 62222608, U23B2049, 61925602), in part by the Haihe Lab of ITAI under Grant 22HHXCJC00002, in part by Tianjin Natural Science Funds for Distinguished Young Scholar under Grant 23JCJQJC00270, and in part by the Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications under Grant BDIC-2023-A-008. This work was also sponsored by CAAI-CANN Open Fund, developed on OpenI Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7694 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, B., Yao, H., Zhu, P., Hu, Q. (2025). Visible and Clear: Finding Tiny Objects in Difference Map. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15075. Springer, Cham. https://doi.org/10.1007/978-3-031-72643-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72643-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72642-2

  • Online ISBN: 978-3-031-72643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics