[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CityGaussian: Real-Time High-Quality Large-Scale Scene Rendering with Gaussians

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

The advancement of real-time 3D scene reconstruction and novel view synthesis has been significantly propelled by 3D Gaussian Splatting (3DGS). However, effectively training large-scale 3DGS and rendering it in real-time across various scales remains challenging. This paper introduces CityGaussian (CityGS), which employs a novel divide-and-conquer training approach and Level-of-Detail (LoD) strategy for efficient large-scale 3DGS training and rendering. Specifically, the global scene prior and adaptive training data selection enables efficient training and seamless fusion. Based on fused Gaussian primitives, we generate different detail levels through compression, and realize fast rendering across various scales through the proposed block-wise detail levels selection and aggregation strategy. Extensive experimental results on large-scale scenes demonstrate that our approach attains state-of-the-art rendering quality, enabling consistent real-time rendering of large-scale scenes across vastly different scales. Our project page is available at https://dekuliutesla.github.io/citygs/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)

    Article  Google Scholar 

  2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: MIP-Nerf: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)

    Google Scholar 

  3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  4. Chaturvedi, K., Kolbe, T.H.: Integrating dynamic data and sensors with semantic 3D city models in the context of smart cities. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 4, 31–38 (2016)

    Article  Google Scholar 

  5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

  6. Chen, G., Wang, W.: A survey on 3D gaussian splatting. arXiv preprint arXiv:2401.03890 (2024)

  7. Dodge, Y.: The Concise Encyclopedia of Statistics. Springer, New York (2008). https://doi.org/10.1007/978-0-387-32833-1

    Book  Google Scholar 

  8. Dong, Q., Shu, M., Cui, H., Xu, H., Hu, Z.: Learning stratified 3D reconstruction. Sci. Chin. Inf. Sci. 61, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: LightGaussian: unbounded 3D gaussian compression with 15x reduction and 200+ fps. arXiv preprint arXiv:2311.17245 (2023)

  10. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  11. Gu, J., et al.: Ue4-nerf: neural radiance field for real-time rendering of large-scale scene. arXiv preprint arXiv:2310.13263 (2023)

  12. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graphics 42(4) (2023)

    Google Scholar 

  13. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graphics (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  14. Lassner, C., Zollhofer, M.: Pulsar: efficient sphere-based neural rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1440–1449 (2021)

    Google Scholar 

  15. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3D gaussian representation for radiance field. arXiv preprint arXiv:2311.13681 (2023)

  16. Li, Y., et al.: MatrixCity: a large-scale city dataset for city-scale neural rendering and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3205–3215 (2023)

    Google Scholar 

  17. Lin, J., et al.: VastGaussian: vast 3D gaussians for large scene reconstruction. In: CVPR (2024)

    Google Scholar 

  18. Luebke, D.: Level of Detail for 3D Graphics. Morgan Kaufmann (2003)

    Google Scholar 

  19. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  20. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16190–16199 (2022)

    Google Scholar 

  21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  22. Morgenstern, W., Barthel, F., Hilsmann, A., Eisert, P.: Compact 3D scene representation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299 (2023)

  23. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graphics (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  24. Navaneet, K., Meibodi, K.P., Koohpayegani, S.A., Pirsiavash, H.: Compact3D: compressing gaussian splat radiance field models with vector quantization. arXiv preprint arXiv:2311.18159 (2023)

  25. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)

    Google Scholar 

  26. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  27. Reiser, C., et al.: MeRF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. ACM Trans. Graphics (TOG) 42(4), 1–12 (2023)

    Article  Google Scholar 

  28. Rematas, K., et al.: Urban radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12932–12942 (2022)

    Google Scholar 

  29. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  30. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM SIGGRAPH 2006 Papers, pp. 835–846 (2006)

    Google Scholar 

  31. Song, K., Zhang, J.: City-on-web: real-time neural rendering of large-scale scenes on the web. arXiv preprint arXiv:2312.16457 (2023)

  32. Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–9 (2022)

    Google Scholar 

  33. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)

    Google Scholar 

  34. Tancik, M., et al.: Block-NeRF: scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8248–8258 (2022)

    Google Scholar 

  35. Tancik, M., et al.: NeRFstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–12 (2023)

    Google Scholar 

  36. Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-NeRF: scalable construction of large-scale nerfs for virtual fly-throughs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12922–12931 (2022)

    Google Scholar 

  37. Turki, H., Zhang, J.Y., Ferroni, F., Ramanan, D.: Suds: scalable urban dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12375–12385 (2023)

    Google Scholar 

  38. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  39. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: SynSin: end-to-end view synthesis from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7467–7477 (2020)

    Google Scholar 

  40. Wu, X., et al.: ScaNeRF: scalable bundle-adjusting neural radiance fields for large-scale scene rendering. ACM Trans. Graphics (TOG) 42(6), 1–18 (2023)

    Google Scholar 

  41. Xiangli, Y., et al.: BungeeNeRF: progressive neural radiance field for extreme multi-scale scene rendering. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 106–122. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_7

  42. Xu, D., Jiang, Y., Wang, P., Fan, Z., Shi, H., Wang, Z.: SinNeRF: training neural radiance fields on complex scenes from a single image. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 736–753. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_42

  43. Xu, L., et al.: Grid-guided neural radiance fields for large urban scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8296–8306 (2023)

    Google Scholar 

  44. Xu, Q., et al.: Point-nerf: Point-based neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022). https://doi.org/10.1109/cvpr52688.2022.00536

  45. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable surface splatting for point-based geometry processing. ACM Transactions on Graphics, pp. 1–14 (2019). https://doi.org/10.1145/3355089.3356513

  46. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021). https://doi.org/10.1109/iccv48922.2021.00570

  47. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  48. Zhang, Y., Chen, G., Cui, S.: Efficient large-scale scene representation with a hybrid of high-resolution grid and plane features. arXiv preprint arXiv:2303.03003 (2023)

  49. Zhenxing, M., Xu, D.: Switch-NeRF: learning scene decomposition with mixture of experts for large-scale neural radiance fields. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  50. Zhuang, Y., et al.: Anti-aliased neural implicit surfaces with encoding level of detail. In: SIGGRAPH Asia 2023 Conference Papers, pp. 1–10 (2023)

    Google Scholar 

  51. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA volume splatting. In: Proceedings Visualization, 2001. VIS’01, pp. 29–538. IEEE (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (No. 2022ZD0116500), the National Natural Science Foundation of China (No. U21B2042, No. 62320106010), and in part by the 2035 Innovation Program of CAS, and the InnoHK program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junran Peng or Zhaoxiang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3214 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Luo, C., Fan, L., Wang, N., Peng, J., Zhang, Z. (2025). CityGaussian: Real-Time High-Quality Large-Scale Scene Rendering with Gaussians. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72640-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72639-2

  • Online ISBN: 978-3-031-72640-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics