[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Seasonal-Trend Representations and Conditional Heteroskedasticity for Time Series Analysis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15021))

Included in the following conference series:

  • 293 Accesses

Abstract

Modeling and applying non-stationary time series with seasonal and trend features is a significant issue in the analysis of time series data. However, existing statistical methods decompose the series into seasonal and trend components, and ignore the correlation and conditional heteroskedasticity in residuals. In this paper, we present the first attempt to engage the autoregressive conditional heteroskedasticity (ARCH) in joint contemplation regarding the seasonal-trend decomposition, and extend the scope of learning seasonal-trend representations. We propose a novel model to learn seasonal-trend and conditional heteroskedasticity (STCH). We focus on understanding seasonal and trend patterns in data while also considering conditional heteroskedasticity, which is an important aspect in time series analysis. To be specific, we broaden the scope of the time series investigation by (1) simultaneously decomposing seasonal and trend components, (2) accounting for the correlation in the residuals, and (3) exploring the conditional heteroskedasticity within the residuals. Experiments on various numerical simulated data and real-world datasets have validated the accuracy and effectiveness of the proposed model and method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov, A., et al.: GluonTS: probabilistic time series models in python. arXiv preprint arXiv:1906.05264 (2019)

  2. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    Google Scholar 

  3. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1991). https://doi.org/10.1007/978-1-4419-0320-4

    Book  Google Scholar 

  4. Cleveland, R.B., Cleveland, W.S., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3 (1990)

    Google Scholar 

  5. Du, H., Du, S., Li, W.: Probabilistic time series forecasting with deep non-linear state space models. CAAI Trans. Intell. Technol. 8(1), 3–13 (2023)

    Article  MathSciNet  Google Scholar 

  6. Du, H., Li, L., Huang, Z., Yu, X.: Object-goal visual navigation via effective exploration of relations among historical navigation states. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2563–2573, June 2023

    Google Scholar 

  7. Du, H., Yu, X., Zheng, L.: VTNet: visual transformer network for object goal navigation. In: ICLR 2021-9th International Conference on Learning Representations. International Conference on Learning Representations, ICLR (2021)

    Google Scholar 

  8. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica J. Econ. Soc. 50, 987–1007 (1982)

    Google Scholar 

  9. Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods, vol. 20. Springer, New York (2003). https://doi.org/10.1007/978-0-387-69395-8

    Book  Google Scholar 

  10. Gardner, E.S., Jr.: Exponential smoothing: the state of the art. J. Forecast. 4(1), 1–28 (1985)

    Article  MathSciNet  Google Scholar 

  11. Hall, P., Hart, J.D.: Nonparametric regression with long-range dependence. Stoch. Process. Their Appl. 36(2), 339–351 (1990)

    Article  MathSciNet  Google Scholar 

  12. Hart, J.D., Wehrly, T.E.: Kernel regression estimation using repeated measurements data. J. Am. Stat. Assoc. 81(396), 1080–1088 (1986)

    Article  MathSciNet  Google Scholar 

  13. Huang, C., Petukhina, A.: Applied Time Series Analysis and Forecasting with Python. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13584-2

    Book  Google Scholar 

  14. Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. Royal Stat. Soc. B (Stat. Methodol.) 59(2), 319–351 (1997)

    Article  MathSciNet  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski, T.: Deep state space models for time series forecasting. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  17. Robinson, P.M.: Large-sample inference for nonparametric regression with dependent errors. Ann. Stat. 25(5), 2054–2083 (1997)

    Article  MathSciNet  Google Scholar 

  18. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  19. Silverman, B.W.: Smoothed functional principal components analysis by choice of norm. Ann. Stat. 24(1), 1–24 (1996)

    Article  MathSciNet  Google Scholar 

  20. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)

    Article  MathSciNet  Google Scholar 

  21. Tsay, R.S.: Analysis of Financial Time Series. Wiley, Hoboken (2005)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Vogt, M., Linton, O.: Nonparametric estimation of a periodic sequence in the presence of a smooth trend. Biometrika 101(1), 121–140 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wang, S., You, J., Huang, T.: Modelling and applications for non-stationary time series in the presence of trend and period. SCIENTIA SINICA Mathematica 52(2), 177–208 (2022)

    Article  Google Scholar 

  25. Wang, Z., Xu, X., Zhang, W., Trajcevski, G., Zhong, T., Zhou, F.: Learning latent seasonal-trend representations for time series forecasting. Adv. Neural. Inf. Process. Syst. 35, 38775–38787 (2022)

    Google Scholar 

  26. Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Cost: contrastive learning of disentangled seasonal-trend representations for time series forecasting. In: International Conference on Learning Representations (2021)

    Google Scholar 

  27. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  28. Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: FEDformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning. PMLR, pp. 27268–27286 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Yu, W., Du, H., Du, S., You, J., Tang, Y. (2024). Learning Seasonal-Trend Representations and Conditional Heteroskedasticity for Time Series Analysis. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15021. Springer, Cham. https://doi.org/10.1007/978-3-031-72347-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72347-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72346-9

  • Online ISBN: 978-3-031-72347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics