[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

NAVIGATOR-D3: Neural Architecture Search Using VarIational Graph Auto-encoder Toward Optimal aRchitecture Design for Diverse Datasets

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15016))

Included in the following conference series:

  • 412 Accesses

Abstract

Neural architecture search (NAS) is an automated machine learning method that optimizes neural network architectures depending on the dataset or its purpose. With the advances in NAS, high-accuracy neural network architectures can be built for a specific dataset without any expert skills. However, NAS is an expensive, time-consuming, and resource-intensive technique. Therefore, searching for the optimal architecture from scratch for each new dataset is inefficient. To accommodate the expected future increase in datasets, a technique is required that directly predicts the optimized architecture for unknown datasets. Therefore, we propose a framework that generates architectures for unknown datasets by mapping adequate architectures for existing datasets into the latent feature space. A variational graph autoencoder (VGAE) is utilized for latent feature mapping. Our experimental results indicate that the architecture generated by the proposed method from the information of previously obtained high-accuracy architectures performs effectively for new datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agiollo, A., Omicini, A.: Gnn2gnn: graph neural networks to generate neural networks. In: Uncertainty in Artificial Intelligence, pp. 32–42. PMLR (2022)

    Google Scholar 

  2. Alvarez-Melis, D., Fusi, N.: Geometric dataset distances via optimal transport. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21428–21439. Curran Associates, Inc. (2020)

    Google Scholar 

  3. Chatzianastasis, M., et al.: Graph-based neural architecture search with operation embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 393–402 (2021). https://doi.org/10.1109/ICCVW54120.2021.00048

  4. Chen, Y., et al.: Contrastive neural architecture search with neural architecture comparators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9502–9511 (2021). https://doi.org/10.1109/CVPR46437.2021.00938

  5. Dudziak, L., et al.: Brp-nas: prediction-based nas using gcns. Adv. Neural. Inf. Process. Syst. 33, 10480–10490 (2020)

    Google Scholar 

  6. Friede, D., et al.: A variational-sequential graph autoencoder for neural architecture performance prediction. arXiv preprint (2019). https://doi.org/10.48550/arXiv.1912.05317

  7. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994). https://doi.org/10.1109/34.291440

    Article  Google Scholar 

  8. Jiang, D., et al.: Could graph neural networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and graph-based models. J. Cheminf. 13(1), 1–23 (2021). https://doi.org/10.1186/s13321-020-00479-8

    Article  MathSciNet  Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint (2013). https://doi.org/10.48550/arXiv.1312.6114

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint (2016). https://doi.org/10.48550/arXiv.1609.02907

  11. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint (2016). https://doi.org/10.48550/arXiv.1611.07308

  12. Krishnakumar, A., et al.: Nas-bench-suite-zero: accelerating research on zero cost proxies. Adv. Neural. Inf. Process. Syst. 35, 28037–28051 (2022)

    Google Scholar 

  13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  14. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  15. Lee, H., Hyung, E., Hwang, S.J.: Rapid neural architecture search by learning to generate graphs from datasets. arXiv preprint (2021). https://doi.org/10.48550/arXiv.2107.00860

  16. Li, J., et al.: Neural architecture optimization with graph vae. arXiv preprint (2020). 10.48550/arXiv.2006.10310

    Google Scholar 

  17. Li, Y., Peng, X.: Network architecture search for domain adaptation. arXiv preprint (2020). https://doi.org/10.48550/arXiv.2008.05706

  18. Liu, H., et al.: Darts: differentiable architecture search. arXiv preprint (2018). https://doi.org/10.48550/arXiv.1806.09055

  19. Lu, Z., et al.: Neural architecture transfer. arXiv preprint (2020). https://doi.org/10.48550/arXiv.2005.05859

  20. Lukasik, J., et al.: Smooth variational graph embeddings for efficient neural architecture search. In: International Joint Conference on Neural Networks, pp. 1–8 (2020)

    Google Scholar 

  21. Lukasik, J., et al.: Learning where to look - generative NAS is surprisingly efficient. CoRR arxiv:2203.08734 (2022)

  22. Luo, R., et al.: Neural architecture optimization. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  23. Mathisen, B.M., et al.: Learning similarity measures from data. Prog. Artif. Intelli. 9 (2019). https://doi.org/10.1007/s13748-019-00201-2

  24. Mellor, J., et al.: Neural architecture search without training. In: International Conference on Machine Learning, vol. 139, pp. 7588–7598. PMLR (2021). https://doi.org/10.1109/ACCESS.2021.3052996

  25. Muravev, A., et al.: Neural architecture search by estimation of network structure distributions. IEEE Access 9 (2021). https://doi.org/10.1109/ACCESS.2021.3052996

  26. Ning, X., Zheng, Y., Zhao, T., Wang, Yu., Yang, H.: A generic graph-based neural architecture encoding scheme for predictor-based NAS. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 189–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_12

    Chapter  Google Scholar 

  27. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Phil. Maga. J. Sci. 2(11) (1901). https://doi.org/10.1080/14786440109462720

  28. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  29. Sanchez-Gonzalez, A., et al.: Learning to simulate complex physics with graph networks. In: Proceedings of the International Conference on Machine Learning, pp. 8459–8468 (2020)

    Google Scholar 

  30. Scarselli, F., et al.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008). https://doi.org/10.1109/TNN.2008.2005605

    Article  Google Scholar 

  31. Schrod, S., et al.: FACT: federated adversarial cross training. arXiv preprint (2023). https://doi.org/10.48550/arXiv.2306.00607

  32. Shi, H., et al.: Bridging the gap between sample-based and one-shot neural architecture search with bonas. Adv. Neural. Inf. Process. Syst. 33, 1808–1819 (2020)

    Google Scholar 

  33. Singamsetti, M., et al.: Conceptual expansion neural architecture search (cenas). arXiv preprint (2021). DOI: https://doi.org/10.48550/arXiv.2110.03144

  34. Suchopárová, G., Neruda, R.: Graph embedding for neural architecture search with input-output information. In: AutoML Conference Workshop Track (2022)

    Google Scholar 

  35. Velickovic, P., et al.: Graph attention networks. In: International Conference on Learning Representations (2018). https://doi.org/10.17863/CAM.48429

  36. Wen, W., et al.: Neural predictor for neural architecture search. In: Proceedings of European Conference on Computer Vision (2019)

    Google Scholar 

  37. White, C., et al.: Bananas: bayesian optimization with neural architectures for neural architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  38. Wistuba, M.: XferNAS: transfer neural architecture search. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 247–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67664-3_15

    Chapter  Google Scholar 

  39. Wong, C., et al.: Transfer learning with neural automl. Adv. Neural Inf. Process. Syst. (2018)

    Google Scholar 

  40. Xu, Y., et al.: PC-DARTS: partial channel connections for memory-efficient architecture search. In: International Conference on Learning Representations (2020)

    Google Scholar 

  41. Yan, S., et al.: Does unsupervised architecture representation learning help neural architecture search? Adv. Neural Inf. Process. Syst. (2020)

    Google Scholar 

  42. Zoph, B., et al.: Learning transferable architectures for scalable image recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018). DOI: https://doi.org/10.1109/CVPR.2018.00907

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Hemmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hemmi, K., Tanigaki, Y., Onishi, M. (2024). NAVIGATOR-D3: Neural Architecture Search Using VarIational Graph Auto-encoder Toward Optimal aRchitecture Design for Diverse Datasets. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72332-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72331-5

  • Online ISBN: 978-3-031-72332-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics