Abstract
Neural architecture search (NAS) is an automated machine learning method that optimizes neural network architectures depending on the dataset or its purpose. With the advances in NAS, high-accuracy neural network architectures can be built for a specific dataset without any expert skills. However, NAS is an expensive, time-consuming, and resource-intensive technique. Therefore, searching for the optimal architecture from scratch for each new dataset is inefficient. To accommodate the expected future increase in datasets, a technique is required that directly predicts the optimized architecture for unknown datasets. Therefore, we propose a framework that generates architectures for unknown datasets by mapping adequate architectures for existing datasets into the latent feature space. A variational graph autoencoder (VGAE) is utilized for latent feature mapping. Our experimental results indicate that the architecture generated by the proposed method from the information of previously obtained high-accuracy architectures performs effectively for new datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Agiollo, A., Omicini, A.: Gnn2gnn: graph neural networks to generate neural networks. In: Uncertainty in Artificial Intelligence, pp. 32–42. PMLR (2022)
Alvarez-Melis, D., Fusi, N.: Geometric dataset distances via optimal transport. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21428–21439. Curran Associates, Inc. (2020)
Chatzianastasis, M., et al.: Graph-based neural architecture search with operation embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 393–402 (2021). https://doi.org/10.1109/ICCVW54120.2021.00048
Chen, Y., et al.: Contrastive neural architecture search with neural architecture comparators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9502–9511 (2021). https://doi.org/10.1109/CVPR46437.2021.00938
Dudziak, L., et al.: Brp-nas: prediction-based nas using gcns. Adv. Neural. Inf. Process. Syst. 33, 10480–10490 (2020)
Friede, D., et al.: A variational-sequential graph autoencoder for neural architecture performance prediction. arXiv preprint (2019). https://doi.org/10.48550/arXiv.1912.05317
Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994). https://doi.org/10.1109/34.291440
Jiang, D., et al.: Could graph neural networks learn better molecular representation for drug discovery? a comparison study of descriptor-based and graph-based models. J. Cheminf. 13(1), 1–23 (2021). https://doi.org/10.1186/s13321-020-00479-8
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint (2013). https://doi.org/10.48550/arXiv.1312.6114
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint (2016). https://doi.org/10.48550/arXiv.1609.02907
Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint (2016). https://doi.org/10.48550/arXiv.1611.07308
Krishnakumar, A., et al.: Nas-bench-suite-zero: accelerating research on zero cost proxies. Adv. Neural. Inf. Process. Syst. 35, 28037–28051 (2022)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)
LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Lee, H., Hyung, E., Hwang, S.J.: Rapid neural architecture search by learning to generate graphs from datasets. arXiv preprint (2021). https://doi.org/10.48550/arXiv.2107.00860
Li, J., et al.: Neural architecture optimization with graph vae. arXiv preprint (2020). 10.48550/arXiv.2006.10310
Li, Y., Peng, X.: Network architecture search for domain adaptation. arXiv preprint (2020). https://doi.org/10.48550/arXiv.2008.05706
Liu, H., et al.: Darts: differentiable architecture search. arXiv preprint (2018). https://doi.org/10.48550/arXiv.1806.09055
Lu, Z., et al.: Neural architecture transfer. arXiv preprint (2020). https://doi.org/10.48550/arXiv.2005.05859
Lukasik, J., et al.: Smooth variational graph embeddings for efficient neural architecture search. In: International Joint Conference on Neural Networks, pp. 1–8 (2020)
Lukasik, J., et al.: Learning where to look - generative NAS is surprisingly efficient. CoRR arxiv:2203.08734 (2022)
Luo, R., et al.: Neural architecture optimization. Adv. Neural Inf. Process. Syst. 31 (2018)
Mathisen, B.M., et al.: Learning similarity measures from data. Prog. Artif. Intelli. 9 (2019). https://doi.org/10.1007/s13748-019-00201-2
Mellor, J., et al.: Neural architecture search without training. In: International Conference on Machine Learning, vol. 139, pp. 7588–7598. PMLR (2021). https://doi.org/10.1109/ACCESS.2021.3052996
Muravev, A., et al.: Neural architecture search by estimation of network structure distributions. IEEE Access 9 (2021). https://doi.org/10.1109/ACCESS.2021.3052996
Ning, X., Zheng, Y., Zhao, T., Wang, Yu., Yang, H.: A generic graph-based neural architecture encoding scheme for predictor-based NAS. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 189–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_12
Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Phil. Maga. J. Sci. 2(11) (1901). https://doi.org/10.1080/14786440109462720
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sanchez-Gonzalez, A., et al.: Learning to simulate complex physics with graph networks. In: Proceedings of the International Conference on Machine Learning, pp. 8459–8468 (2020)
Scarselli, F., et al.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008). https://doi.org/10.1109/TNN.2008.2005605
Schrod, S., et al.: FACT: federated adversarial cross training. arXiv preprint (2023). https://doi.org/10.48550/arXiv.2306.00607
Shi, H., et al.: Bridging the gap between sample-based and one-shot neural architecture search with bonas. Adv. Neural. Inf. Process. Syst. 33, 1808–1819 (2020)
Singamsetti, M., et al.: Conceptual expansion neural architecture search (cenas). arXiv preprint (2021). DOI: https://doi.org/10.48550/arXiv.2110.03144
Suchopárová, G., Neruda, R.: Graph embedding for neural architecture search with input-output information. In: AutoML Conference Workshop Track (2022)
Velickovic, P., et al.: Graph attention networks. In: International Conference on Learning Representations (2018). https://doi.org/10.17863/CAM.48429
Wen, W., et al.: Neural predictor for neural architecture search. In: Proceedings of European Conference on Computer Vision (2019)
White, C., et al.: Bananas: bayesian optimization with neural architectures for neural architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)
Wistuba, M.: XferNAS: transfer neural architecture search. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 247–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67664-3_15
Wong, C., et al.: Transfer learning with neural automl. Adv. Neural Inf. Process. Syst. (2018)
Xu, Y., et al.: PC-DARTS: partial channel connections for memory-efficient architecture search. In: International Conference on Learning Representations (2020)
Yan, S., et al.: Does unsupervised architecture representation learning help neural architecture search? Adv. Neural Inf. Process. Syst. (2020)
Zoph, B., et al.: Learning transferable architectures for scalable image recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018). DOI: https://doi.org/10.1109/CVPR.2018.00907
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hemmi, K., Tanigaki, Y., Onishi, M. (2024). NAVIGATOR-D3: Neural Architecture Search Using VarIational Graph Auto-encoder Toward Optimal aRchitecture Design for Diverse Datasets. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15016. Springer, Cham. https://doi.org/10.1007/978-3-031-72332-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-72332-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72331-5
Online ISBN: 978-3-031-72332-2
eBook Packages: Computer ScienceComputer Science (R0)