[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Noise-NeRF: Hide Information in Neural Radiance Field Using Trainable Noise

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15017))

Included in the following conference series:

Abstract

Neural Radiance Field (NeRF) has been proposed as an innovative advancement in 3D reconstruction techniques. However, little research has been conducted on the issues of information confidentiality and security to NeRF, such as steganography. Existing NeRF steganography solutions have shortcomings in low steganography quality, model weight damage, and limited amount of steganographic information. This paper proposes Noise-NeRF, a novel NeRF steganography method employing Adaptive Pixel Selection strategy and Pixel Perturbation strategy to improve the quality and efficiency of steganography via trainable noise. Extensive experiments validate the state-of-the-art performances of Noise-NeRF on both steganography quality and rendering quality, as well as effectiveness in super-resolution image steganography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://lumalabs.ai/

  2. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  3. Baluja, S.: hiding images within images. IEEE Trans. Pattern Anal. Mach. Intell. 1685–1697 (2019)

    Google Scholar 

  4. Baluja, S.: hiding images in plain sight: deep steganography. Adv. Neural Inf. Proc. Syst. 30 (2017)

    Google Scholar 

  5. Bao, C., et al.: Sine: semantic-driven image-based nerf editing with prior-guided editing field. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20919–20929 (2023)

    Google Scholar 

  6. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  7. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security And Privacy (SP), pp. 39–57 (2017)

    Google Scholar 

  8. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  11. Fridrich, J., Goljan, M., Du, R.: Detecting LSB steganography in color, and gray-scale images. IEEE Multimedia 8, 22–28 (2001)

    Google Scholar 

  12. Horváth, A., Józsa, C.M.: Targeted adversarial attacks on generalizable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3718–3727 (2023)

    Google Scholar 

  13. Hyung, J., Hwang, S., Kim, D., Lee, H., Choo, J.: Local 3D editing via 3D distillation of clip knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12674–12684 (2023)

    Google Scholar 

  14. Irshad, M.Z., et al.: Neo 360: neural fields for sparse view synthesis of outdoor scenes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9187–9198 (2023)

    Google Scholar 

  15. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  16. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  17. Levy, D., et al.: Seathru-nerf: Neural radiance fields in scattering media. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 56–65 (2023)

    Google Scholar 

  18. Li, C., Feng, B.Y., Fan, Z., Pan, P., Wang, Z.: Steganerf: embedding invisible information within neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 441–453 (2023)

    Google Scholar 

  19. Luo, W., Huang, F., Huang, J.: Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 201–214 (2010)

    Google Scholar 

  20. Luo, Z., Guo, Q., Cheung, K.C., See, S., Wan, R.: Copyrnerf: protecting the copyright of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22401–22411 (2023)

    Google Scholar 

  21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  22. Marvel, L.M., Boncelet, C.G., Retter, C.T.: Spread spectrum image steganography. IEEE Trans. Image Proc. 1075–1083 (1999)

    Google Scholar 

  23. Mi, Z., Xu, D.: Switch-nerf: learning scene decomposition with mixture of experts for large-scale neural radiance fields. In: Proceedings of the International Conference on Learning Representations (ICLR) (2023)

    Google Scholar 

  24. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG), 1–14 (2019)

    Google Scholar 

  25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99–106 (2021)

    Article  Google Scholar 

  26. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41, 1–15 (2022)

    Article  Google Scholar 

  27. Praun, E., Hoppe, H., Finkelstein, A.: Robust mesh watermarking. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 49–56 (1999)

    Google Scholar 

  28. Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  29. Rustad, S., et al.: Inverted LSB image steganography using adaptive pattern to improve imperceptibility. J. King Saud Univ. Comput. Inf. Sci. 3559–3568 (2022)

    Google Scholar 

  30. Tancik, M., et al.: Block-nerf: scalable large scene neural view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8248–8258 (2022)

    Google Scholar 

  31. Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–12 (2023)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Proc. Syst. 30 (2017)

    Google Scholar 

  33. Wang, Q., Zheng, B., Li, Q., Shen, C., Ba, Z.: Towards query-efficient adversarial attacks against automatic speech recognition systems. IEEE Trans. Inf. Forensics Secur. 896–908 (2020)

    Google Scholar 

  34. Wang, Q., et al.: Ibrnet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2021)

    Google Scholar 

  35. Wang, T., et al.: Rodin: a generative model for sculpting 3d digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4563–4573 (2023)

    Google Scholar 

  36. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 606–615 (2018)

    Google Scholar 

  37. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 600–612 (2004). https://doi.org/10.1109/tip.2003.819861,

  38. Wu, Y., Meng, G., Chen, Q.: Embedding novel views in a single jpeg image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14519–14527 (2021)

    Google Scholar 

  39. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  40. Zhan, F., Liu, L., Kortylewski, A., Theobalt, C.: General neural gauge fields. In: Proceedings of the International Conference on Learning Representations (ICLR) (2023)

    Google Scholar 

  41. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/cvpr.2018.00068

  42. Zhang, T., Ping, X.: Reliable detection of LSB steganography based on the difference image histogram. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003.(ICASSP’03), pp. III–545 (2003)

    Google Scholar 

  43. Zheng, T., Chen, C., Ren, K.: Distributionally adversarial attack. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2253–2260 (2019)

    Google Scholar 

  44. Zhu, J., Zhang, Y., Zhang, X., Cao, X.: Gaussian model for 3D mesh steganography. IEEE Signal Proc. Lett. 28, 1729–1733 (2021)

    Article  Google Scholar 

  45. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: Proceedings of the European Conference on computer vision (ECCV), pp. 657–672 (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China (2022YFB3105405, 2021YFC3300502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liao or Pengyuan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Q., Li, H., Liao, Y., Hao, Y., Zhou, P. (2024). Noise-NeRF: Hide Information in Neural Radiance Field Using Trainable Noise. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15017. Springer, Cham. https://doi.org/10.1007/978-3-031-72335-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72335-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72334-6

  • Online ISBN: 978-3-031-72335-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics