[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Self-supervised Denoising and Bulk Motion Artifact Removal of 3D Optical Coherence Tomography Angiography of Awake Brain

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Denoising of 3D Optical Coherence Tomography Angiography (OCTA) for awake brain microvasculature is challenging. An OCTA volume is scanned slice by slice, with each slice (named B-scan) derived from dynamic changes in successively acquired OCT images. A B-scan of an awake brain often suffers from complex noise and Bulk Motion Artifacts (BMA), severely degrading image quality. Also, acquiring clean B-scans for training is difficult. Fortunately, we observe that, the slice-wise imaging procedure makes the noises mostly independent across B-scans, while preserving the continuity of vessel (including capillaries) signals across B-scans. Thus inspired, we propose a novel blind-slice self-supervised learning method to denoise 3D brain OCTA volumes slice by slice. For each B-scan slice, named center B-scan, we mask it entirely black and train the network to recover the original center B-scan using its neighboring B-scans. To enhance the BMA removal performance, we adaptively select only BMA-free center B-scans for model training. We further propose two novel refinement methods: (1) a non-local block to enhance vessel continuity and (2) a weighted loss to improve vascular contrast. To the best of our knowledge, this is the first self-supervised 3D OCTA denoising method that effectively reduces both complex noise and BMA while preserving capillary signals in brain OCTA volumes. Code is available at https://github.com/ZhenghLi/SOAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://github.com/Hsuxu/Magic-VNet

  2. Batson, J., Royer, L.: Noise2self: Blind denoising by self-supervision. In: International Conference on Machine Learning. pp. 524–533. PMLR (2019)

    Google Scholar 

  3. Bian, L., Suo, J., Chen, F., Dai, Q.: Multiframe denoising of high-speed optical coherence tomography data using interframe and intraframe priors. Journal of biomedical optics 20(3), 036006 (2015)

    Article  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). vol. 2, pp. 60–65. Ieee (2005)

    Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. TIP 16(8), 2080–2095 (2007)

    MathSciNet  Google Scholar 

  6. Daneshmand, P.G., Mehridehnavi, A., Rabbani, H.: Reconstruction of optical coherence tomography images using mixed low rank approximation and second order tensor based total variation method. TMI 40(3), 865–878 (2020)

    Google Scholar 

  7. Fang, L., Li, S., Nie, Q., Izatt, J.A., Toth, C.A., Farsiu, S.: Sparsity based denoising of spectral domain optical coherence tomography images. Biomedical optics express 3(5), 927–942 (2012)

    Article  Google Scholar 

  8. Guo, A., Fang, L., Qi, M., Li, S.: Unsupervised denoising of optical coherence tomography images with nonlocal-generative adversarial network. IEEE Transactions on Instrumentation and Measurement (2020)

    Google Scholar 

  9. Hossbach, J., Husvogt, L., Kraus, M.F., Fujimoto, J.G., Maier, A.K.: Deep oct angiography image generation for motion artifact suppression. In: Bildverarbeitung für die Medizin 2020, pp. 248–253. Springer (2020)

    Google Scholar 

  10. Jiang, Z., Huang, Z., Qiu, B., Meng, X., You, Y., Liu, X., Liu, G., Zhou, C., Yang, K., Maier, A., et al.: Comparative study of deep learning models for optical coherence tomography angiography. Biomedical optics express 11(3), 1580–1597 (2020)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  12. Koch, V., Holmberg, O., Spitzer, H., Schiefelbein, J., Asani, B., Hafner, M., Theis, F.J.: Noise transfer for unsupervised domain adaptation of retinal oct images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 699–708. Springer (2022)

    Google Scholar 

  13. Krull, A., Buchholz, T.O., Jug, F.: Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2129–2137 (2019)

    Google Scholar 

  14. Laine, S., Karras, T., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  15. Lee, W., Son, S., Lee, K.M.: Ap-bsn: Self-supervised denoising for real-world images via asymmetric pd and blind-spot network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17725–17734 (2022)

    Google Scholar 

  16. Li, M., Zhang, Y., Ji, Z., Xie, K., Yuan, S., Liu, Q., Chen, Q.: Ipn-v2 and octa-500: Methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)

  17. Li, M., Idoughi, R., Choudhury, B., Heidrich, W.: Statistical model for oct image denoising. Biomedical optics express 8(9), 3903–3917 (2017)

    Article  Google Scholar 

  18. Liu, X., Huang, Z., Wang, Z., Wen, C., Jiang, Z., Yu, Z., Liu, J., Liu, G., Huang, X., Maier, A., et al.: A deep learning based pipeline for optical coherence tomography angiography. Journal of Biophotonics 12(10), e201900008 (2019)

    Article  Google Scholar 

  19. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. TIP 22(1), 119–133 (2012)

    MathSciNet  Google Scholar 

  20. Mahapatra, D., Bozorgtabar, B., Shao, L.: Pathological retinal region segmentation from oct images using geometric relation based augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9611–9620 (2020)

    Google Scholar 

  21. Mehdizadeh, M., MacNish, C., Xiao, D., Alonso-Caneiro, D., Kugelman, J., Bennamoun, M.: Deep feature loss to denoise oct images using deep neural networks. Journal of Biomedical Optics 26(4), 046003 (2021)

    Article  Google Scholar 

  22. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth international conference on 3D vision (3DV) (2016)

    Google Scholar 

  23. Neshatavar, R., Yavartanoo, M., Son, S., Lee, K.M.: Cvf-sid: Cyclic multi-variate function for self-supervised image denoising by disentangling noise from image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17583–17591 (2022)

    Google Scholar 

  24. Qiu, B., Huang, Z., Liu, X., Meng, X., You, Y., Liu, G., Yang, K., Maier, A., Ren, Q., Lu, Y.: Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function. Biomedical Optics Express 11(2), 817–830 (2020)

    Article  Google Scholar 

  25. Ren, J., Park, K., Pan, Y., Ling, H.: Self-supervised bulk motion artifact removal in optical coherence tomography angiography. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20617–20625 (2022)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. pp. 234–241. Springer (2015)

    Google Scholar 

  27. Schmitt, J.M.: Optical coherence tomography (oct): a review. IEEE Journal of selected topics in quantum electronics 5(4), 1205–1215 (1999)

    Article  Google Scholar 

  28. Shamouilian, M., Selesnick, I.: Total variation denoising for optical coherence tomography. In: IEEE Signal Processing in Medicine and Biology Symposium (SPMB) (2019)

    Google Scholar 

  29. Sheth, D.Y., Mohan, S., Vincent, J.L., Manzorro, R., Crozier, P.A., Khapra, M.M., Simoncelli, E.P., Fernandez-Granda, C.: Unsupervised deep video denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1759–1768 (2021)

    Google Scholar 

  30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7794–7803 (2018)

    Google Scholar 

  31. Wang, Z., Liu, J., Li, G., Han, H.: Blind2unblind: Self-supervised image denoising with visible blind spots. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2027–2036 (2022)

    Google Scholar 

  32. Yang, J., Hu, Y., Fang, L., Cheng, J., Liu, J.: Universal digital filtering for denoising volumetric retinal oct and oct angiography in 3d shearlet domain. Optics Letters 45(3), 694–697 (2020)

    Article  Google Scholar 

  33. Yu, X., Ge, C., Li, M., Yuan, M., Liu, L., Mo, J., Shum, P.P., Chen, J.: Self-supervised blind2unblind deep learning scheme for oct speckle reductions. Biomedical Optics Express 14(6), 2773–2795 (2023)

    Article  Google Scholar 

  34. Zhang, D., Zhou, F.: Self-supervised image denoising for real-world images with context-aware transformer. IEEE Access 11, 14340–14349 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants 1R21DA057699 (HL/YP/CD), 1RF1DA048808 (YP/CD) and 2R01DA029718 (CD/YP), and partially supported by NSF grants 2006665 (HL) and 2128350 (HL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Ling .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 958 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z. et al. (2024). Self-supervised Denoising and Bulk Motion Artifact Removal of 3D Optical Coherence Tomography Angiography of Awake Brain. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15011. Springer, Cham. https://doi.org/10.1007/978-3-031-72120-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72120-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72119-9

  • Online ISBN: 978-3-031-72120-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics