[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15011))

  • 1044 Accesses

Abstract

One-shot detection of anatomical landmarks is gaining significant attention for its efficiency in using minimal labeled data to produce promising results. However, the success of current methods heavily relies on the employment of extensive unlabeled data to pre-train an effective feature extractor, which limits their applicability in scenarios where a substantial amount of unlabeled data is unavailable. In this paper, we propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images by utilizing solely a single template image without any additional unlabeled data. Specifically, we use the frozen image encoder of visual foundation models as the feature extractor, and introduce dual-branch global and local feature decoders to increase the resolution of extracted features in a coarse-to-fine manner. The introduced feature decoders are efficiently trained with a distance-aware similarity learning loss to incorporate domain knowledge from the single template image. Moreover, a novel bidirectional matching strategy is developed to improve both robustness and accuracy of landmark detection in the case of scattered similarity map obtained by foundation models. We validate our method on two public anatomical landmark detection datasets. By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods. Code is available at: https://github.com/JuzhengMiao/FM-OSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual descriptors. arXiv preprint arXiv:2112.058142(3),  4 (2021)

  2. An, X., Zhao, L., Gong, C., Wang, N., Wang, D., Yang, J.: Sharpose: Sparse high-resolution representation for human pose estimation. arXiv preprint arXiv:2312.10758 (2023)

  3. Anand, D., Singhal, V., Shanbhag, D.D., KS, S., Patil, U., Bhushan, C., Manickam, K., Gui, D., Mullick, R., Gopal, A., et al.: One-shot localization and segmentation of medical images with foundation models. arXiv preprint arXiv:2310.18642 (2023)

  4. Bai, X., Bai, F., Huo, X., Ge, J., Lu, J., Ye, X., Yan, K., Xia, Y.: Samv2: A unified framework for learning appearance, semantic and cross-modality anatomical embeddings. arXiv preprint arXiv:2311.15111 (2023)

  5. Bier, B., Unberath, M., Zaech, J.N., Fotouhi, J., Armand, M., Osgood, G., Navab, N., Maier, A.: X-ray-transform invariant anatomical landmark detection for pelvic trauma surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 55–63. Springer (2018)

    Google Scholar 

  6. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 9650–9660 (2021)

    Google Scholar 

  7. Dekel, T., Oron, S., Rubinstein, M., Avidan, S., Freeman, W.T.: Best-buddies similarity for robust template matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2021–2029 (2015)

    Google Scholar 

  8. Deng, R., Cui, C., Liu, Q., Yao, T., Remedios, L.W., Bao, S., Landman, B.A., Wheless, L.E., Coburn, L.A., Wilson, K.T., et al.: Segment anything model (sam) for digital pathology: Assess zero-shot segmentation on whole slide imaging. arXiv preprint arXiv:2304.04155 (2023)

  9. Han, D., Gao, Y., Wu, G., Yap, P.T., Shen, D.: Robust anatomical landmark detection for mr brain image registration. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14-18, 2014, Proceedings, Part I 17. pp. 186–193. Springer (2014)

    Google Scholar 

  10. He, S., Bao, R., Li, J., Grant, P.E., Ou, Y.: Accuracy of segment-anything model (sam) in medical image segmentation tasks. arXiv preprint arXiv:2304.09324 (2023)

  11. Jiang, Y., Li, Y., Wang, X., Tao, Y., Lin, J., Lin, H.: Cephalformer: Incorporating global structure constraint into visual features for general cephalometric landmark detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 227–237. Springer (2022)

    Google Scholar 

  12. Junaid, N., Khan, N., Ahmed, N., Abbasi, M.S., Das, G., Maqsood, A., Ahmed, A.R., Marya, A., Alam, M.K., Heboyan, A.: Development, application, and performance of artificial intelligence in cephalometric landmark identification and diagnosis: a systematic review. In: Healthcare. vol. 10, p. 2454. MDPI (2022)

    Google Scholar 

  13. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  14. Oktay, O., Bai, W., Guerrero, R., Rajchl, M., De Marvao, A., O’Regan, D.P., Cook, S.A., Heinrich, M.P., Glocker, B., Rueckert, D.: Stratified decision forests for accurate anatomical landmark localization in cardiac images. IEEE transactions on medical imaging 36(1), 332–342 (2016)

    Article  Google Scholar 

  15. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  16. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based cnns for landmark localization. Medical image analysis 54, 207–219 (2019)

    Article  Google Scholar 

  17. Quan, Q., Yao, Q., Li, J., Zhou, S.K.: Which images to label for few-shot medical landmark detection? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20606–20616 (2022)

    Google Scholar 

  18. Wang, C.W., Huang, C.T., Lee, J.H., Li, C.H., Chang, S.W., Siao, M.J., Lai, T.M., Ibragimov, B., Vrtovec, T., Ronneberger, O., et al.: A benchmark for comparison of dental radiography analysis algorithms. Medical image analysis 31, 63–76 (2016)

    Article  Google Scholar 

  19. Yan, K., Cai, J., Jin, D., Miao, S., Guo, D., Harrison, A.P., Tang, Y., Xiao, J., Lu, J., Lu, L.: Sam: Self-supervised learning of pixel-wise anatomical embeddings in radiological images. IEEE Transactions on Medical Imaging 41(10), 2658–2669 (2022)

    Article  Google Scholar 

  20. Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI). pp. 17–21. IEEE (2015)

    Google Scholar 

  21. Yao, Q., Quan, Q., Xiao, L., Kevin Zhou, S.: One-shot medical landmark detection. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24. pp. 177–188. Springer (2021)

    Google Scholar 

  22. Yao, Q., Wang, J., Sun, Y., Quan, Q., Zhu, H., Zhou, S.K.: Relative distance matters for one-shot landmark detection. arXiv preprint arXiv:2203.01687 (2022)

  23. Yin, Z., Gong, P., Wang, C., Yu, Y., Wang, Y.: One-shot medical landmark localization by edge-guided transform and noisy landmark refinement. In: European Conference on Computer Vision. pp. 473–489. Springer (2022)

    Google Scholar 

  24. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural mr images. IEEE journal of biomedical and health informatics 21(6), 1607–1616 (2017)

    Article  Google Scholar 

  25. Zhou, G.Q., Miao, J., Yang, X., Li, R., Huo, E.Z., Shi, W., Huang, Y., Qian, J., Chen, C., Ni, D.: Learn fine-grained adaptive loss for multiple anatomical landmark detection in medical images. IEEE Journal of Biomedical and Health Informatics 25(10), 3854–3864 (2021)

    Article  Google Scholar 

  26. Zhu, H., Quan, Q., Yao, Q., Liu, Z., Zhou, S.K.: Uod: Universal one-shot detection of anatomical landmarks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 24–34. Springer (2023)

    Google Scholar 

  27. Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: You only learn once: Universal anatomical landmark detection. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part V 24. pp. 85–95. Springer (2021)

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region, China, under Project T45-401/22-N; and by the Hong Kong Innovation and Technology Fund (Project No. MHP/085/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chen .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miao, J., Chen, C., Zhang, K., Chuai, J., Li, Q., Heng, PA. (2024). FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15011. Springer, Cham. https://doi.org/10.1007/978-3-031-72120-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72120-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72119-9

  • Online ISBN: 978-3-031-72120-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics