[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

H2ASeg: Hierarchical Adaptive Interaction and Weighting Network for Tumor Segmentation in PET/CT Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15008))

  • 1305 Accesses

Abstract

Positron emission tomography (PET) combined with computed tomography (CT) imaging is routinely used in cancer diagnosis and prognosis by providing complementary information. Automatically segmenting tumors in PET/CT images can significantly improve examination efficiency. Traditional multi-modal segmentation solutions mainly rely on concatenation operations for modality fusion, which fail to effectively model the non-linear dependencies between PET and CT modalities. Recent studies have investigated various approaches to optimize the fusion of modality-specific features for enhancing joint representations. However, modality-specific encoders used in these methods operate independently, inadequately leveraging the synergistic relationships inherent in PET and CT modalities, for example, the complementarity between semantics and structure. To address these issues, we propose a Hierarchical Adaptive Interaction and Weighting Network termed H2ASeg to explore the intrinsic cross-modal correlations and transfer potential complementary information. Specifically, we design a Modality-Cooperative Spatial Attention (MCSA) module that performs intra- and inter-modal interactions globally and locally. Additionally, a Target-Aware Modality Weighting (TAMW) module is developed to highlight tumor-related features within multi-modal features, thereby refining tumor segmentation. By embedding these modules across different layers, H2ASeg can hierarchically model cross-modal correlations, enabling a nuanced understanding of both semantic and structural tumor features. Extensive experiments demonstrate the superiority of H2ASeg, outperforming state-of-the-art methods on AutoPet-II and Hecktor2022 benchmarks. The code is released at https://github.com/JinPLu/H2ASeg.

J. Lu, J. Chen and L. Cai—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrearczyk, V., Oreiller, V., Boughdad, S., Le Rest, C.C., Tankyevych, O., Elhalawani, H., Jreige, M., Prior, J.O., Vallières, M., Visvikis, D., et al.: Automatic head and neck tumor segmentation and outcome prediction relying on fdg-pet/ct images: findings from the second edition of the hecktor challenge. Medical Image Analysis 90, 102972 (2023)

    Google Scholar 

  2. Bhalerao, M., Thakur, S.: Brain tumor segmentation based on 3d residual u-net. In: International MICCAI Brainlesion Workshop. pp. 218–225. Springer (2019)

    Google Scholar 

  3. Bussink, J., Kaanders, J.H., Van Der Graaf, W.T., Oyen, W.J.: Pet-ct for radiotherapy treatment planning and response monitoring in solid tumors. Nat. Rev. Clin. Oncol. 8(4), 233–242 (2011)

    Article  Google Scholar 

  4. Cai, L., Huang, S., Zhang, Y., Lu, J., Zhang, Y.: Rethinking attention-based multiple instance learning for whole-slide pathological image classification: An instance attribute viewpoint. arXiv preprint arXiv:2404.00351 (2024)

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. pp. 424–432. Springer (2016)

    Google Scholar 

  6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  7. Ell, P.: The contribution of pet/ct to improved patient management. Br. J. Radiol. 79(937), 32–36 (2006)

    Article  Google Scholar 

  8. Gatidis S, K.T.: A whole-body fdg-pet/ct dataset with manually annotated tumor lesions (fdg-pet-ct-lesions). The Cancer Imaging Archive 226 (2022)

    Google Scholar 

  9. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In: International MICCAI Brainlesion Workshop. pp. 272–284. Springer (2021)

    Google Scholar 

  10. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. pp. 574–584 (2022)

    Google Scholar 

  11. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Kapoor, V., McCook, B.M., Torok, F.S.: An introduction to pet-ct imaging. Radiographics 24(2), 523–543 (2004)

    Article  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). pp. 565–571. Ieee (2016)

    Google Scholar 

  15. Mu, W., Jiang, L., Zhang, J., Shi, Y., Gray, J.E., Tunali, I., Gao, C., Sun, Y., Tian, J., Zhao, X., et al.: Non-invasive decision support for nsclc treatment using pet/ct radiomics. Nat. Commun. 11(1), 5228 (2020)

    Article  Google Scholar 

  16. Oreiller, V., Andrearczyk, V., Jreige, M., Boughdad, S., Elhalawani, H., Castelli, J., Vallieres, M., Zhu, S., Xie, J., Peng, Y., et al.: Head and neck tumor segmentation in pet/ct: the hecktor challenge. Med. Image Anal. 77, 102336 (2022)

    Article  Google Scholar 

  17. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: Transbts: Multimodal brain tumor segmentation using transformer. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. pp. 109–119. Springer (2021)

    Google Scholar 

  18. Wang, Z., Hong, Y.: A2fseg: Adaptive multi-modal fusion network for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 673–681. Springer (2023)

    Google Scholar 

  19. Wang, Z., Zhang, Y., Wang, Y., Cai, L., Zhang, Y.: Dynamic pseudo label optimization in point-supervised nuclei segmentation (2024)

    Google Scholar 

  20. Xiang, D., Zhang, B., Lu, Y., Deng, S.: Modality-specific segmentation network for lung tumor segmentation in pet-ct images. IEEE J. Biomed. Health Inform. 27(3), 1237–1248 (2022)

    Article  Google Scholar 

  21. Xing, Z., Yu, L., Wan, L., Han, T., Zhu, L.: Nestedformer: Nested modality-aware transformer for brain tumor segmentation (2022)

    Google Scholar 

  22. Xue, Z., Li, P., Zhang, L., Lu, X., Zhu, G., Shen, P., Ali Shah, S.A., Bennamoun, M.: Multi-modal co-learning for liver lesion segmentation on pet-ct images. IEEE Trans. Med. Imaging 40(12), 3531–3542 (2021)

    Article  Google Scholar 

  23. Zhang, Y., He, N., Yang, J., Li, Y., Wei, D., Huang, Y., Zhang, Y., He, Z., Zheng, Y.: mmformer: Multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 107–117. Springer (2022)

    Google Scholar 

  24. Zhang, Y., Cai, L., Wang, Z., Zhang, Y.: Seine: Structure encoding and interaction network for nuclei instance segmentation. arXiv preprint arXiv:2401.09773 (2024)

  25. Zhang, Y., Wang, Y., Fang, Z., Bian, H., Cai, L., Wang, Z., Zhang, Y.: Dawn: Domain-adaptive weakly supervised nuclei segmentation via cross-task interactions. arXiv preprint arXiv:2404.14956 (2024)

  26. Zhao, X., Li, L., Lu, W., Tan, S.: Tumor co-segmentation in pet/ct using multi-modality fully convolutional neural network. Physics in Medicine & Biology 64(1), 015011 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62031023 &62331011), in part by the Shenzhen Science and Technology Project (GXWD20220818170353009), and in part by the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2023050)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1372 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, J., Chen, J., Cai, L., Jiang, S., Zhang, Y. (2024). H2ASeg: Hierarchical Adaptive Interaction and Weighting Network for Tumor Segmentation in PET/CT Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics